找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Grant
61#
發(fā)表于 2025-4-1 04:53:20 | 只看該作者
62#
發(fā)表于 2025-4-1 07:43:38 | 只看該作者
,Poincaré Surface of Sections, Mappings,o-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the . + 1-th p
63#
發(fā)表于 2025-4-1 11:54:35 | 只看該作者
The KAM Theorem,ator .(θ., .) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五指山市| 马公市| 浙江省| 资兴市| 宁乡县| 无锡市| 上杭县| 彭山县| 邯郸县| 饶阳县| 杂多县| 龙井市| 嫩江县| 夏河县| 织金县| 南康市| 启东市| 昭通市| 铜鼓县| 长治县| 曲麻莱县| 焦作市| 河东区| 新郑市| 昆山市| 鲁甸县| 陆川县| 赤峰市| 裕民县| 东海县| 阳西县| 宁河县| 当阳市| 乐都县| 长垣县| 宜阳县| 当阳市| 德州市| 吴旗县| 漠河县| 海丰县|