找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Theory of Algebraic Numbers; Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a

[復(fù)制鏈接]
查看: 33057|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:19:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classical Theory of Algebraic Numbers
編輯Paulo Ribenboim
視頻videohttp://file.papertrans.cn/228/227139/227139.mp4
叢書名稱Universitext
圖書封面Titlebook: Classical Theory of Algebraic Numbers;  Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a
描述Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat‘s Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer‘s theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat‘s Last Theorem for r
出版日期Textbook 2001Latest edition
關(guān)鍵詞algebra; algebraic geometry; automorphism; cryptography; diophantine equation; field; prime number; quadrat
版次2
doihttps://doi.org/10.1007/978-0-387-21690-4
isbn_softcover978-1-4419-2870-2
isbn_ebook978-0-387-21690-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 2001
The information of publication is updating

書目名稱Classical Theory of Algebraic Numbers影響因子(影響力)




書目名稱Classical Theory of Algebraic Numbers影響因子(影響力)學(xué)科排名




書目名稱Classical Theory of Algebraic Numbers網(wǎng)絡(luò)公開度




書目名稱Classical Theory of Algebraic Numbers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classical Theory of Algebraic Numbers被引頻次




書目名稱Classical Theory of Algebraic Numbers被引頻次學(xué)科排名




書目名稱Classical Theory of Algebraic Numbers年度引用




書目名稱Classical Theory of Algebraic Numbers年度引用學(xué)科排名




書目名稱Classical Theory of Algebraic Numbers讀者反饋




書目名稱Classical Theory of Algebraic Numbers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:57:19 | 只看該作者
The Decomposition of Prime Ideals in Galois Extensionse a prime ideal of ., and let . be the decomposition of . into a product of prime ideals, with .. We shall study in more detail how this decomposition takes place. This has been done by Hilbert, assuming that .|. is a Galois extension.
地板
發(fā)表于 2025-3-22 05:38:37 | 只看該作者
Textbook 2001Latest editionhis attempt to prove Fermat‘s Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of
5#
發(fā)表于 2025-3-22 12:29:49 | 只看該作者
6#
發(fā)表于 2025-3-22 15:07:50 | 只看該作者
https://doi.org/10.1007/978-1-4613-8345-1respectively, .), be the rings of algebraic integers of . (respectively, .). Let . be any nonzero fractional ideal of .. The aim of this study is to relate the decomposition of . into prime ideals of ., with the decomposition into prime ideals of ., of the fractional ideal of . generated by ..
7#
發(fā)表于 2025-3-22 18:25:58 | 只看該作者
8#
發(fā)表于 2025-3-22 23:04:07 | 只看該作者
Research Issues in Learning Disabilitiese a prime ideal of ., and let . be the decomposition of . into a product of prime ideals, with .. We shall study in more detail how this decomposition takes place. This has been done by Hilbert, assuming that .|. is a Galois extension.
9#
發(fā)表于 2025-3-23 04:03:51 | 只看該作者
10#
發(fā)表于 2025-3-23 05:39:18 | 只看該作者
https://doi.org/10.1007/978-1-4613-8345-1respectively, .), be the rings of algebraic integers of . (respectively, .). Let . be any nonzero fractional ideal of .. The aim of this study is to relate the decomposition of . into prime ideals of ., with the decomposition into prime ideals of ., of the fractional ideal of . generated by ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢湾区| 康平县| 固始县| 策勒县| 靖州| 临城县| 且末县| 区。| 杭锦后旗| 花垣县| 朝阳区| 寻乌县| 贺州市| 克什克腾旗| 漳州市| 十堰市| 名山县| 天水市| 克什克腾旗| 精河县| 噶尔县| 南郑县| 丁青县| 大理市| 通山县| 托克托县| 林口县| 曲周县| 禄劝| 会理县| 柳江县| 郯城县| 大厂| 噶尔县| 衢州市| 襄汾县| 蒙城县| 镇安县| 全南县| 永兴县| 马关县|