找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Orthogonal Polynomials of a Discrete Variable; Arnold F. Nikiforov,Vasilii B. Uvarov,Sergei K. Su Textbook 1991 Springer-Verlag

[復(fù)制鏈接]
樓主: 皺紋
21#
發(fā)表于 2025-3-25 06:26:04 | 只看該作者
Manuel Rudolph,Svenja Polst,Joerg DoerrIn the approximate calculation of definite integrals and of sums of a large number of terms, numerical analysis makes extensive use of quadrature formulas of Gaussian type, which depend on properties of orthogonal polynomials.
22#
發(fā)表于 2025-3-25 08:01:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:33 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:17 | 只看該作者
Classical Orthogonal Polynomials of a Discrete Variableelations of a more general form, which can be expressed in terms of Stielties integrals . where .(.) is a monotonic nondecreasing function (usually called the distribution function). The orthogonality relation (2.0.2) is reduced to (2.0.1) in the case when the function .(.) has a derivative on (a, .
25#
發(fā)表于 2025-3-25 21:39:20 | 只看該作者
Classical Orthogonal Polynomials of a Discrete Variable on Nonuniform Lattices equation . which approximates (3.1.1) on a lattice of constant mesh . = .. After a change of independent variable, . = .(.) we can obtain a further generalization to the case when (3.1.1) is replaced by a difference equation on a class of lattices with variable mesh . = .(. + .) - .(.): . Equation
26#
發(fā)表于 2025-3-26 02:29:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:43:53 | 只看該作者
Hyperspherical HarmonicsAn important class of special functions which naturally occur in this work is constituted by .. In quantum mechanis these functions are used to construct basis functions in the .-harmonic method and in the translation-invariant model of shells thus enabling one to compute the fundamental physical ch
28#
發(fā)表于 2025-3-26 09:48:06 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:40:49 | 只看該作者
Bernadette O’Rourke,Sara C. Brennandringlich, um eine Kontinuit?t der wissenschaftsimmanenten Best?nde aufzudecken und künftig zu vermeiden. Es sollten daher st?rker die institutionellen Strukturen, die theoretischen Voraussetzungen und die methodologischen Instrumente in die fachhistorische Forschung einbezogen werden.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
碌曲县| 安仁县| 泰顺县| 淮安市| 杨浦区| 基隆市| 乌鲁木齐市| 莎车县| 屏边| 本溪| 个旧市| 乌什县| 台安县| 汤阴县| 苏尼特右旗| 黄石市| 互助| 房山区| 屏东市| 苏尼特左旗| 五常市| 武邑县| 辽阳县| 常熟市| 峨边| 通化市| 磐石市| 自贡市| 涞源县| 梁山县| 天台县| 双桥区| 习水县| 芦山县| 东阳市| 柳林县| 孟津县| 高邮市| 南陵县| 焦作市| 察隅县|