找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 2012Latest edition Springer Basel 2012 Inner product space.L

[復(fù)制鏈接]
樓主: 矜持
11#
發(fā)表于 2025-3-23 12:07:08 | 只看該作者
https://doi.org/10.1057/9780230606975Let (.) and (.) be arbitrary real inner product spaces each containing at least two linearly independent elements. However, as in the earlier chapters we do not exclude the case that there exist infinite linearly independent subsets of . or ..
12#
發(fā)表于 2025-3-23 15:07:12 | 只看該作者
Translation Groups,A ..is a real vector space X together with a mapping .satisfying . for all ...
13#
發(fā)表于 2025-3-23 19:03:15 | 只看該作者
Euclidean and Hyperbolic Geometry,. designates again an arbitrary real inner product space containing two linearly independent elements. As throughout the whole book, we do not exclude the case that there exists an infinite and linearly independent subset of ..
14#
發(fā)表于 2025-3-24 00:48:12 | 只看該作者
15#
發(fā)表于 2025-3-24 04:28:34 | 只看該作者
16#
發(fā)表于 2025-3-24 09:58:08 | 只看該作者
,,–Projective Mappings, Isomorphism Theorems,Let (.) and (.) be arbitrary real inner product spaces each containing at least two linearly independent elements. However, as in the earlier chapters we do not exclude the case that there exist infinite linearly independent subsets of . or ..
17#
發(fā)表于 2025-3-24 14:20:58 | 只看該作者
18#
發(fā)表于 2025-3-24 16:59:25 | 只看該作者
https://doi.org/10.1057/9780230606975ill be a plane of ?.. This simple and great idea of Gottfried Wilhelm Leibniz (1646–1716) allows us to characterize hyperplanes of euclidean, of hyperbolic geometry, of spherical geometry, the geometries of Lorentz–Minkowski and de Sitter through the (finite or infinite) dimensions . 2 of . as will
19#
發(fā)表于 2025-3-24 22:23:36 | 只看該作者
20#
發(fā)表于 2025-3-25 02:39:12 | 只看該作者
metry, the geometries of Lorentz-Minkowski and de Sitter, and this through finite or infinite dimensions greater than 1. .Another new and fundamental result in this edition concerns the representation of hyperb978-3-0348-0741-8978-3-0348-0420-2
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万荣县| 诸暨市| 深圳市| 南平市| 九江市| 临夏市| 酒泉市| 昭通市| 乐山市| 江都市| 化隆| 公安县| 洪泽县| 景洪市| 德兴市| 永宁县| 张家港市| 江孜县| 句容市| 收藏| 马鞍山市| 城市| 新平| 建平县| 惠来县| 恭城| 临汾市| 花垣县| 留坝县| 弥勒县| 垫江县| 永宁县| 禄丰县| 翁牛特旗| 古蔺县| 新化县| 肃南| 楚雄市| 富源县| 个旧市| 邢台市|