找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Field Theory; From Theory to Pract Georges Gras Book 2003 Springer-Verlag Berlin Heidelberg 2003 Abelian closure.Class field theory.a

[復(fù)制鏈接]
樓主: Pierce
21#
發(fā)表于 2025-3-25 05:09:27 | 只看該作者
Invariant Class Groups in ,-Ramification Genus Theory,iori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.
22#
發(fā)表于 2025-3-25 07:38:16 | 只看該作者
https://doi.org/10.1007/978-1-349-11098-8This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
23#
發(fā)表于 2025-3-25 14:58:06 | 只看該作者
Basic Tools and Notations,This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
24#
發(fā)表于 2025-3-25 16:30:46 | 只看該作者
Reciprocity Maps Existence Theorems,nd commented so as to be used. This is so true that, as we will see several times, a classical proof consists in . local class field theory from global class field theory, as was initiated by Hasse and Schmidt in 1930, and in particular to base some local computations on global arguments (a typical
25#
發(fā)表于 2025-3-25 21:06:08 | 只看該作者
,Abelian Extensions with Restricted Ramification — Abelian Closure,cesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..
26#
發(fā)表于 2025-3-26 02:23:35 | 只看該作者
27#
發(fā)表于 2025-3-26 04:54:54 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:55 | 只看該作者
7樓
29#
發(fā)表于 2025-3-26 12:40:39 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 18:35:38 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇文区| 桂东县| 武川县| 赫章县| 华亭县| 江孜县| 大城县| 二连浩特市| 永吉县| 将乐县| 丰顺县| 辉县市| 迁安市| 汤原县| 台中县| 金寨县| 永善县| 越西县| 平昌县| 科尔| 永新县| 平果县| 富阳市| 江陵县| 乌审旗| 南汇区| 利津县| 高密市| 龙门县| 丹凤县| 西盟| 西乌珠穆沁旗| 泗水县| 海阳市| 淮滨县| 铜山县| 宜春市| 曲水县| 大庆市| 新乡县| 红原县|