找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Characters and Blocks of Solvable Groups; A User’s Guide to La James Cossey,Yong Yang Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: 租期
11#
發(fā)表于 2025-3-23 11:22:21 | 只看該作者
12#
發(fā)表于 2025-3-23 16:49:20 | 只看該作者
Immunvermittelte ZNS-Erkrankungen,see our first of several important results bounding the size of certain fixed point subspaces, and we see how to use those bounds to generate regular orbits. We end with a discussion of the work of the second author that classifies the solvable primitive groups that do not have regular orbits.
13#
發(fā)表于 2025-3-23 18:20:06 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:22 | 只看該作者
Praxisbuch neurologische Pharmakotherapieth a “l(fā)arge” orbit, in the sense that the centralizer of . is contained in a “small” Fitting subgroup of .. We discuss the subtle proof of Moreto and Wolf, which will have several applications later in the book. We also discuss a stronger result by the second author.
15#
發(fā)表于 2025-3-24 02:46:47 | 只看該作者
Forschungsgruppe PETRA gGmbH, Schlüchternable group .. We begin with a subtle variation of Gluck’s permutation lemma, and then use another large orbit theorem to prove the best currently known bound for Huppert’s conjecture for solvable groups.
16#
發(fā)表于 2025-3-24 08:12:33 | 只看該作者
Spannungsfelder der Praxisforschungscussing certain induction and restriction theorems that require a variation of Dolfi’s large orbit theorem from Chapter 8. We then discuss a result of Moreto and Wolf that determines that number of characters needed to “cover” the order of the solvable group .. In the last section we discuss, witho
17#
發(fā)表于 2025-3-24 10:48:08 | 只看該作者
James Cossey,Yong YangDiscusses recent developments in the representation theory of finite solvable groups.Provides an extensive survey of the current state of the large-orbit theorems, providing a broad overview of the to
18#
發(fā)表于 2025-3-24 16:21:57 | 只看該作者
Synthesis Lectures on Mathematics & Statisticshttp://image.papertrans.cn/c/image/224037.jpg
19#
發(fā)表于 2025-3-24 20:15:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:52:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 16:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陵川县| 大英县| 获嘉县| 巴彦淖尔市| 邳州市| 定日县| 四平市| 南宫市| 平谷区| 东城区| 石首市| 运城市| 米易县| 齐河县| 黄龙县| 阿坝| 天峨县| 环江| 济宁市| 永泰县| 山阳县| 东乡县| 庆阳市| 永济市| 红河县| 内黄县| 永登县| 交口县| 宁波市| 钟祥市| 剑阁县| 丹棱县| 临夏市| 永宁县| 吉木萨尔县| 潍坊市| 郑州市| 辛集市| 昌吉市| 清原| 安顺市|