找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Gravitational N-Body Systems; Proceedings of a Wor J. C. Muzzio,S. Ferraz-Mello,J. Henrard Conference proceedings 1996 Kluwer Acad

[復(fù)制鏈接]
樓主: 根深蒂固
11#
發(fā)表于 2025-3-23 10:56:52 | 只看該作者
12#
發(fā)表于 2025-3-23 15:28:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:00 | 只看該作者
Sinking, Tidally Stripped, Galactic Satellites,onally bound, and one of them is much larger than the other, the latter can be regarded as a satellite of the former. The study of their dynamics is somewhat simplified in this case, which presents well observed examples in nature (e.g., globular clusters). Galactic satellites suffer orbital decay d
14#
發(fā)表于 2025-3-24 00:09:17 | 只看該作者
On the Satellite Capture Problem,ed Three-Body Problem. We show that a second integral of motion furnishes an accurate description for the stability limit of retrograde satellites..The distribution of heliocentric orbital elements is studied, and possible candidates to be temporary Jovian satellites are investigated..Previous resul
15#
發(fā)表于 2025-3-24 03:22:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:48:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:18 | 只看該作者
Large Scale Chaos and Marginal Stability in the Solar System,s from the outer region of the solar system. All the inner planets probably experienced large scale chaotic behavior for their obliquities during their history. The Earth obliquity is presently stable only because of the presence of the Moon, and the tilt of Mars undergoes large chaotic variations f
18#
發(fā)表于 2025-3-24 18:25:51 | 只看該作者
Chaos in the Solar System,time for an orbit to make a close encounter with a perturbing planet, T., is a function of the Lyapunov time, ... The relation is log(....) = . + . log(....) where .. is a fiducial period which we have taken as the period of the principal perturber or the period of the asteroid. There are exceptions
19#
發(fā)表于 2025-3-24 21:49:31 | 只看該作者
Geometrodynamics, Chaos and Statistical Behaviour of N-Body Systems,the instability is driven by the fluctuations of some geometrical invariants, rather than by their average values; .) the most commonly used invariant has in general nothing to do with dynamic instability of realistic . systems; .) in order to evaluate correctly the relevant quantities entering thes
20#
發(fā)表于 2025-3-25 01:47:21 | 只看該作者
Geometrodynamics on Finsler Spaces,locities (possibly, on time), using a geometrical description. The manifold in which the dynamical systems live is a Finslerian space in which the conformai factor is a positively homogeneous function of first degree in the velocities (the homogeneous Lagrangian of the system). This method is a gene
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 隆德县| 韶关市| 永川市| 贵州省| 泊头市| 广昌县| 高清| 洞口县| 瓦房店市| 长阳| 普兰店市| 石楼县| 来凤县| 武乡县| 衡东县| 夹江县| 额济纳旗| 垫江县| 堆龙德庆县| 自治县| 涿州市| 富顺县| 米泉市| 靖宇县| 信丰县| 中山市| 抚宁县| 柳江县| 延吉市| 雷州市| 凤翔县| 肇源县| 新密市| 贵定县| 青河县| 绩溪县| 筠连县| 黑水县| 兰考县| 荆州市|