找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos and Quantum Chaos; Proceedings of the E W. Dieter Heiss Conference proceedings 1992 Springer-Verlag Berlin Heidelberg 1992 Mesoscopic

[復(fù)制鏈接]
樓主: estrange
11#
發(fā)表于 2025-3-23 13:43:52 | 只看該作者
Population Ageing and Economic Growthc systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiards, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...), but rather, corresponds to a new universality class.
12#
發(fā)表于 2025-3-23 16:46:19 | 只看該作者
https://doi.org/10.1007/978-3-7908-1906-9th the help of a technique that uses a generating function written as an integral over commuting and anticommuting variables. The following examples are discussed. (i) Statistical nuclear cross-sections; (ii) Chaotic quantum scattering; (iii) Conductance fluctuations in mesoscopic systems.
13#
發(fā)表于 2025-3-23 21:06:55 | 只看該作者
14#
發(fā)表于 2025-3-24 00:23:35 | 只看該作者
Stochastic scattering theory random-matrix models for fluctuations in microscopic and mesoscopic syth the help of a technique that uses a generating function written as an integral over commuting and anticommuting variables. The following examples are discussed. (i) Statistical nuclear cross-sections; (ii) Chaotic quantum scattering; (iii) Conductance fluctuations in mesoscopic systems.
15#
發(fā)表于 2025-3-24 05:13:46 | 只看該作者
0075-8450 ical andquantummechanics, studying in particular the semiclassical limit ofchaotic systems. The effects of disorder from dynamics andtheir relation to stochastic systems, quantum coherenceeffects in mesoscopic systems, and the relevant theoreticalapproaches are fruitfully combined in this volume. Th
16#
發(fā)表于 2025-3-24 06:43:44 | 只看該作者
17#
發(fā)表于 2025-3-24 13:03:19 | 只看該作者
18#
發(fā)表于 2025-3-24 15:29:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶河县| 辽宁省| 托克逊县| 酉阳| 阿瓦提县| 米林县| 阳谷县| 迭部县| 涟源市| 汾西县| 青海省| 兴国县| 二手房| 九寨沟县| 三河市| 青川县| 乌什县| 思南县| 达拉特旗| 荔浦县| 海口市| 拉萨市| 汤原县| 牟定县| 合阳县| 鸡泽县| 大田县| 祁连县| 鄂尔多斯市| 股票| 怀安县| 庆元县| 六枝特区| 汶上县| 清流县| 曲周县| 霍林郭勒市| 会同县| 江北区| 南木林县| 商南县|