找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection Hans Jürgen Korsch,Hans-J?rg Jodl,Timo Hartmann Textbook 2008Latest edition Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:07:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:36 | 只看該作者
Metasomatic Transformation of Aggregates,n contrast to the more frequently discussed linear (i.e., atypical) harmonic oscillators. Here, numerical experiments are helpful for investigating the complex dynamics, in particular by means of Poincaré sections.
34#
發(fā)表于 2025-3-27 10:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:34 | 只看該作者
36#
發(fā)表于 2025-3-27 18:41:53 | 只看該作者
37#
發(fā)表于 2025-3-27 22:09:27 | 只看該作者
Formation of Mixed Crystals in Solutions,ionless motion of a particle on a plane billiard table bounded by a closed curve [2]–[7]. The limiting cases of strictly regular (.) and strictly irregular (. or .) systems can be illustrated, as well as the typical case, which shows a complicated mixture of regular and irregular behavior. The onset
38#
發(fā)表于 2025-3-28 05:58:25 | 只看該作者
Formation of Mixed Crystals in Solutions, this billiard (compare the discussion of billiard systems in Chap. 3 ) consists of two planes symmetrically inclined with respect to a constant (e.g., gravitational) force field. The particle is reflected elastically from these planes. For simplicity, we consider the motion to be two-dimensional. W
39#
發(fā)表于 2025-3-28 08:09:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:22:51 | 只看該作者
Formation of Mixed Crystals in Solutions,ecade. Most of this work has been devoted to bounded systems. More recently, however, irregular chaotic phenomena have also been observed and studied for open (scattering) systems. For recent reviews of chaotic scattering, see the articles by Eckhardt [1], Smilansky [2], and Blümel [3]. Chaotic dyna
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀喇沁旗| 化州市| 彰武县| 太白县| 叶城县| 蚌埠市| 安岳县| 昌乐县| 鞍山市| 兴和县| 佛学| 拉萨市| 垦利县| 福海县| 阳西县| 沽源县| 镇雄县| 西乌珠穆沁旗| 南通市| 吴桥县| 阳东县| 刚察县| 岳普湖县| 汝城县| 襄汾县| 施甸县| 鄂温| 池州市| 杂多县| 隆尧县| 明溪县| 萍乡市| 张掖市| 呼伦贝尔市| 弋阳县| 通海县| 赤水市| 普宁市| 岳西县| 沾化县| 南漳县|