找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection Hans Jürgen Korsch,Hans-J?rg Jodl,Timo Hartmann Textbook 2008Latest edition Springer-Verlag Berlin Heidelberg 2

[復制鏈接]
樓主: 航天飛機
31#
發(fā)表于 2025-3-26 23:07:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:36 | 只看該作者
Metasomatic Transformation of Aggregates,n contrast to the more frequently discussed linear (i.e., atypical) harmonic oscillators. Here, numerical experiments are helpful for investigating the complex dynamics, in particular by means of Poincaré sections.
34#
發(fā)表于 2025-3-27 10:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:34 | 只看該作者
36#
發(fā)表于 2025-3-27 18:41:53 | 只看該作者
37#
發(fā)表于 2025-3-27 22:09:27 | 只看該作者
Formation of Mixed Crystals in Solutions,ionless motion of a particle on a plane billiard table bounded by a closed curve [2]–[7]. The limiting cases of strictly regular (.) and strictly irregular (. or .) systems can be illustrated, as well as the typical case, which shows a complicated mixture of regular and irregular behavior. The onset
38#
發(fā)表于 2025-3-28 05:58:25 | 只看該作者
Formation of Mixed Crystals in Solutions, this billiard (compare the discussion of billiard systems in Chap. 3 ) consists of two planes symmetrically inclined with respect to a constant (e.g., gravitational) force field. The particle is reflected elastically from these planes. For simplicity, we consider the motion to be two-dimensional. W
39#
發(fā)表于 2025-3-28 08:09:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:22:51 | 只看該作者
Formation of Mixed Crystals in Solutions,ecade. Most of this work has been devoted to bounded systems. More recently, however, irregular chaotic phenomena have also been observed and studied for open (scattering) systems. For recent reviews of chaotic scattering, see the articles by Eckhardt [1], Smilansky [2], and Blümel [3]. Chaotic dyna
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
轮台县| 万盛区| 洞口县| 浦城县| 利川市| 衡南县| 梨树县| 清远市| 滁州市| 车险| 周宁县| 延津县| 垦利县| 齐齐哈尔市| 武义县| 巴塘县| 定襄县| 三原县| 兴隆县| 边坝县| 河间市| 多伦县| 永修县| 体育| 武汉市| 苗栗县| 大田县| 蓝田县| 正蓝旗| 沙河市| 盐城市| 揭东县| 高邮市| 闸北区| 武安市| 漳州市| 台南市| 饶平县| 白银市| 吉木萨尔县| 乐陵市|