找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection H. J. Korsch,H.-J. Jodl Book 19941st edition Springer-Verlag Berlin Heidelberg 1994 Chaostheorie.Fractals.Frakt

[復制鏈接]
樓主: solidity
21#
發(fā)表于 2025-3-25 06:18:28 | 只看該作者
22#
發(fā)表于 2025-3-25 10:37:06 | 只看該作者
23#
發(fā)表于 2025-3-25 12:11:34 | 只看該作者
Book 19941st editiontudents in physics, mathematics, and engineering will find a thorough intoduction to fundamentals and applications in this field. Many numerical experiments and suggestions for further studies help the reader to become familiar with this fascinationg topic.
24#
發(fā)表于 2025-3-25 18:59:12 | 只看該作者
Nonlinear Dynamics and Deterministic Chaos,e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
25#
發(fā)表于 2025-3-25 21:37:43 | 只看該作者
Billiard Systems,t of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
26#
發(fā)表于 2025-3-26 02:26:42 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:31 | 只看該作者
https://doi.org/10.1007/978-3-642-37179-0e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
30#
發(fā)表于 2025-3-26 19:34:47 | 只看該作者
S.-H. Hyon,K. Jamshidi,Y. Ikadat of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
黔东| 西峡县| 资源县| 钟祥市| 郴州市| 祁东县| 邓州市| 上杭县| 密云县| 璧山县| 彰化市| 高淳县| 余庆县| 宁德市| 清河县| 介休市| 塔城市| 韶关市| 林芝县| 阜康市| 合阳县| 汶川县| 博客| 洛川县| 定州市| 巧家县| 阳泉市| 万载县| 田林县| 玛多县| 隆昌县| 闻喜县| 安溪县| 九龙县| 都兰县| 虹口区| 望城县| 富源县| 奉化市| 鱼台县| 龙胜|