找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; Poincaré Seminar 201 Bertrand Duplantier,Stéphane Nonnenmacher,Vincent Book 2013 Springer Basel 2013 Riemann zeta-function.billiard

[復制鏈接]
樓主: Madison
11#
發(fā)表于 2025-3-23 10:46:02 | 只看該作者
https://doi.org/10.1007/978-3-0348-0697-8Riemann zeta-function; billiards; celestial mechanics; chaotic dynamos; quantum chaos; random matrix theo
12#
發(fā)表于 2025-3-23 14:49:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:10 | 只看該作者
1544-9998 ational lectures given at the Institut Henri Poincaré in ParThis twelfth volume in the Poincaré Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of
14#
發(fā)表于 2025-3-24 00:50:01 | 只看該作者
https://doi.org/10.1007/978-3-642-02890-8lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
15#
發(fā)表于 2025-3-24 04:32:00 | 只看該作者
pVT data of polyethylene in propane,gous formula that connects the Riemann zeros and the primes. We also review the role played by Random Matrix Theory in both quantum chaos and the theory of the zeta function. The parallels we review are conjectural and still far from being understood, but the ideas have led to substantial progress in both areas.
16#
發(fā)表于 2025-3-24 09:12:18 | 只看該作者
Chaotic Dynamos Generated by Fully Turbulent Flows,lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
17#
發(fā)表于 2025-3-24 12:51:31 | 只看該作者
18#
發(fā)表于 2025-3-24 16:00:16 | 只看該作者
The Lorenz Attractor, a Paradigm for Chaos,teps in the historical development of the concept of chaos in dynamical systems, from the mathematical point of view. Then, I would like to present the present status of the Lorenz attractor in the panorama of the theory, as we see it Today.
19#
發(fā)表于 2025-3-24 20:45:25 | 只看該作者
,Discrete Graphs – A Paradigm Model for Quantum Chaos,tics with random matrix theory, the role of cycles and their statistics, and percolation of level sets of the eigenvectors. These concepts will be explained and reviewed with reference to the original publications for further details.
20#
發(fā)表于 2025-3-25 02:57:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁德市| 陈巴尔虎旗| 荥经县| 龙州县| 咸宁市| 钟祥市| 当涂县| 汾阳市| 府谷县| 太康县| 通化市| 台北县| 前郭尔| 张家界市| 靖宇县| 涪陵区| 怀柔区| 梁山县| 二手房| 乐清市| 华宁县| 巍山| 柳河县| 横峰县| 宜州市| 庄浪县| 盖州市| 霞浦县| 平度市| 沙坪坝区| 阳高县| 海城市| 通化县| 晋中市| 宣城市| 石台县| 吉安县| 洛宁县| 南昌市| 牙克石市| 涟水县|