找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Automata and Discrete Complex Systems; 20th International W Teijiro Isokawa,Katsunobu Imai,Hiroshi Umeo Conference proceedings 201

[復(fù)制鏈接]
樓主: dabble
11#
發(fā)表于 2025-3-23 12:01:40 | 只看該作者
Real-Time Reversible One-Way Cellular Automatamata. Additionally, we obtain that the corresponding language class is closed under Boolean operations, and we prove the undecidability of several decidability questions. Finally, it is shown that the reversibility of an arbitrary real-time circular one-way cellular automaton is undecidable as well.
12#
發(fā)表于 2025-3-23 14:24:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:39:51 | 只看該作者
https://doi.org/10.1007/978-3-319-18812-6Automata networks; Complexity class; Computational complexity; Cycle equivalence; Decidability; Discrete
14#
發(fā)表于 2025-3-23 23:57:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:52:51 | 只看該作者
16#
發(fā)表于 2025-3-24 06:48:20 | 只看該作者
https://doi.org/10.1007/978-3-322-84184-1In this article, we study countable sofic shifts of Cantor-Bendixson rank at most 2. We prove that their conjugacy problem is complete for ., the complexity class of graph isomorphism, and that the existence problems of block maps, factor maps and embeddings are .-complete.
17#
發(fā)表于 2025-3-24 13:39:26 | 只看該作者
Computational Complexity of the Avalanche Problem on One Dimensional Kadanoff SandpilesIn this paper we prove that the general . . is in .? for the Kadanoff sandpile model in one dimension, answering an open problem of [.]. Thus adding one more item to the (slowly) growing list of dimension sensitive problems since in higher dimensions the problem is .-complete (for monotone sandpiles).
18#
發(fā)表于 2025-3-24 16:41:33 | 只看該作者
Complexity of Conjugacy, Factoring and Embedding for Countable Sofic Shifts of Rank 2In this article, we study countable sofic shifts of Cantor-Bendixson rank at most 2. We prove that their conjugacy problem is complete for ., the complexity class of graph isomorphism, and that the existence problems of block maps, factor maps and embeddings are .-complete.
19#
發(fā)表于 2025-3-24 20:11:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:20:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措美县| 遂溪县| 黎城县| 交口县| 黄大仙区| 嘉峪关市| 诸暨市| 保康县| 鄂托克旗| 临朐县| 大田县| 九龙坡区| 陇川县| 汕尾市| 贵州省| 乌兰县| 芜湖县| 沾化县| 呼图壁县| 漠河县| 日喀则市| 宁武县| 永清县| 砚山县| 海伦市| 东兴市| 武安市| 黄梅县| 镇宁| 岳阳市| 漯河市| 彰化县| 武宣县| 岗巴县| 奉新县| 新津县| 辽阳县| 怀宁县| 巍山| 安龙县| 淮南市|