找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Category Theory and Computer Science; 6th International Co David Pitt,David E. Rydeheard,Peter Johnstone Conference proceedings 1995 Spring

[復制鏈接]
樓主: Roosevelt
31#
發(fā)表于 2025-3-26 21:48:07 | 只看該作者
https://doi.org/10.1007/978-3-319-29788-0relation)— is defined. It is shown that if such a category admits . then it preorderenriches (as a cartesian closed category) with respect to the path relation. By imposing further axioms we can, on the one hand, endow maps and proofs of their approximations (viz. .) with the 2-dimensional algebraic
32#
發(fā)表于 2025-3-27 04:18:10 | 只看該作者
33#
發(fā)表于 2025-3-27 06:17:26 | 只看該作者
34#
發(fā)表于 2025-3-27 13:25:09 | 只看該作者
Ana Hategan MD,James A. Bourgeois OD, MDd compatible unary and dyadic safe recursions. Here . is the partial order → ←. This characterization glues together, along the two sides of ., FP 2-comprehension based characterizations of linear space and P time.
35#
發(fā)表于 2025-3-27 16:35:33 | 只看該作者
Category Theory and Computer Science978-3-540-44661-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 19:22:59 | 只看該作者
Scaling Trends of On-Chip Power Noiseposition, and containing projections, universal functions and functions .. of the s-m-n theorem of Recursion Theory. The notion of EAS is developed as an abstract approach to computability, filling a notational gap between functional and combinatorial theories.
37#
發(fā)表于 2025-3-27 22:12:55 | 只看該作者
Ana Hategan MD,James A. Bourgeois OD, MDd compatible unary and dyadic safe recursions. Here . is the partial order → ←. This characterization glues together, along the two sides of ., FP 2-comprehension based characterizations of linear space and P time.
38#
發(fā)表于 2025-3-28 05:40:07 | 只看該作者
39#
發(fā)表于 2025-3-28 09:29:06 | 只看該作者
40#
發(fā)表于 2025-3-28 13:45:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
长治县| 盐源县| 伽师县| 谢通门县| 陆河县| 龙井市| 屯门区| 新绛县| 马公市| 曲靖市| 巩留县| 府谷县| 长阳| 乐东| 修武县| 外汇| 澳门| 响水县| 新蔡县| 乌什县| 舞钢市| 阿拉善左旗| 汉沽区| 临邑县| 南投县| 华容县| 海晏县| 凤阳县| 丽江市| 兰西县| 贵州省| 崇礼县| 天台县| 隆安县| 宁武县| 慈溪市| 金溪县| 木兰县| 宜黄县| 武鸣县| 桐庐县|