找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cartan Geometries and their Symmetries; A Lie Algebroid Appr Mike Crampin,David Saunders Book 2016 Atlantis Press and the author(s) 2016 Ca

[復(fù)制鏈接]
樓主: ED431
21#
發(fā)表于 2025-3-25 04:52:52 | 只看該作者
22#
發(fā)表于 2025-3-25 07:39:54 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:33 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:22 | 只看該作者
Mike Crampin,David SaundersExpounds a new approach to the theory of Cartan connections as path connections on a certain class of Lie groupoids, or as infinitesimal connections on corresponding Lie algebroids.It contains a compr
25#
發(fā)表于 2025-3-25 22:58:43 | 只看該作者
Atlantis Studies in Variational Geometryhttp://image.papertrans.cn/c/image/222186.jpg
26#
發(fā)表于 2025-3-26 00:15:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:14 | 只看該作者
Lecture Notes in Computer Sciencere both finite and infinitesimal symmetries may be considered, the former being diffeomorphisms with a property such as preserving geodesics, horizontal lifts or something similar, and the latter being vector fields whose flows have the same property.
28#
發(fā)表于 2025-3-26 09:31:17 | 只看該作者
Waldemar Adam,Lazaros Hadjiarapoglou (finite) Cartan geometry as a special kind of fibre-morphism groupoid with a path connection, and use this to motivate a detailed investigation of infinitesimal Cartan geometries given in terms of Lie algebroids. In fact our main concern in subsequent chapters will be with the infinitesimal geometr
29#
發(fā)表于 2025-3-26 15:55:03 | 只看該作者
30#
發(fā)表于 2025-3-26 18:43:53 | 只看該作者
Hideaki Okamura,Yutaka Ishikawa,Mario Tokoron in Chap.?., but which is based on the construction (described in Chap.?.) of a bundle over M whose standard fibre is projective space of dimension dim M, together with the groupoid of projective maps between its fibres.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山西省| 阜城县| 库尔勒市| 剑河县| 深州市| 安新县| 英德市| 新巴尔虎右旗| 隆林| 延安市| 莱西市| 岳普湖县| 九寨沟县| 宁强县| 米易县| 柳河县| 昭通市| 朝阳县| 平远县| 永新县| 麻栗坡县| 余庆县| 黎城县| 五台县| 沂水县| 德阳市| 汉阴县| 中江县| 宁乡县| 九寨沟县| 浦北县| 井冈山市| 政和县| 遂平县| 荆门市| 茂名市| 多伦县| 榆林市| 天峨县| 奉节县| 资中县|