找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleman Estimates and Applications to Uniqueness and Control Theory; Ferruccio Colombini,Claude Zuily Book 2001 Springer Science+Business

[復(fù)制鏈接]
樓主: 哄笑
41#
發(fā)表于 2025-3-28 18:06:50 | 只看該作者
42#
發(fā)表于 2025-3-28 19:01:19 | 只看該作者
Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity,ll of ?...The fundamental difference between our case and the case of the scalar laplacian (see Burq [.]) is that the phenomenon of Rayleigh waves is connected to the failure of the Lopatinskii condition.
43#
發(fā)表于 2025-3-29 02:58:41 | 只看該作者
44#
發(fā)表于 2025-3-29 04:59:55 | 只看該作者
45#
發(fā)表于 2025-3-29 08:19:30 | 只看該作者
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
https://doi.org/10.1007/978-3-642-23415-6operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
47#
發(fā)表于 2025-3-29 18:10:41 | 只看該作者
Some Necessary Conditions for Hyperbolic Systems,tiple characteristic. Our purpose is to find some necessary conditions which correspond to the Ivrii-Petkov conditions for systems. In [.], we obtained a necessary condition in this direction. Here we continue this study.
48#
發(fā)表于 2025-3-29 19:44:53 | 只看該作者
Unique Continuation from Sets of Positive Measure,operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
49#
發(fā)表于 2025-3-30 00:58:54 | 只看該作者
Strong Uniqueness for Fourth Order Elliptic Differential Operators,with complex Lipschitz continuous coefficients and also that .(.) = ..(.) ..(.) where ..(.) and ..(.) are two second order differential elliptic operators such that ..(O, .) = ..(.) = ?Δ. The proof of the theorem mentioned above uses the classical Carleman method.
50#
發(fā)表于 2025-3-30 07:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东城区| 尼木县| 襄城县| 宁海县| 永新县| 南充市| 博爱县| 环江| 前郭尔| 奎屯市| 获嘉县| 深水埗区| 巴南区| 海南省| 南溪县| 古田县| 庄浪县| 盖州市| 瑞金市| 腾冲县| 泉州市| 新兴县| 达拉特旗| 保亭| 玛曲县| 丹东市| 建宁县| 舒城县| 临澧县| 娱乐| 娄烦县| 仙游县| 宜丰县| 敖汉旗| 灵台县| 略阳县| 皮山县| 万源市| 奎屯市| 洪江市| 揭阳市|