找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Invariants on Boolean Algebras; Second Revised Editi J. Donald Monk Book 2014Latest edition Springer Basel 2014 Boolean algebra.ca

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 06:22:14 | 只看該作者
https://doi.org/10.1007/3-540-06721-3Again we note first of all that if . is a non-principal ultrafilter in a BA ., then ..
22#
發(fā)表于 2025-3-25 10:59:34 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:06 | 只看該作者
Gustav Georg Belz,Martin StauchRecall from just before Proposition 13.4 the definition of a right-separated sequencein a topological space. Let . be an ordinal.
25#
發(fā)表于 2025-3-25 23:53:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:03:29 | 只看該作者
Gustav Georg Belz,Martin Stauch(Note that when we say that . is a tree included in ., we mean merely that . is a subset of . which is a tree under the induced ordering; there is no assumption that incomparable elements (in . ) are disjoint (in the dual of .).) ..
27#
發(fā)表于 2025-3-26 07:51:10 | 只看該作者
Gustav Georg Belz,Martin Stauch., h-cof.. sup. : ....
28#
發(fā)表于 2025-3-26 11:40:28 | 只看該作者
Special Operations on Boolean Algebras,We give the basic definitions and facts about several operations on Boolean algebras which were not discussed in the Handbook.
29#
發(fā)表于 2025-3-26 14:34:50 | 只看該作者
Special Classes of Boolean Algebras,We discuss several special classes of Boolean algebras not mentioned in the Handbook.
30#
發(fā)表于 2025-3-26 18:17:08 | 只看該作者
Cellularity,A BA . is said to satisfy the κ-. (κ-cc) if every disjoint subset of . has power <κ. Thus for κ non-limit, this is the same as saying that the cellularity of . is <κ. Of most interest is the ω.-chain condition, called ccc for short (countable chain condition). We shall return to it below.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特右旗| 浏阳市| 沅陵县| 太湖县| 绍兴市| 通城县| 玉林市| 黄冈市| 安阳县| 泰宁县| 西丰县| 建宁县| 敦化市| 宿迁市| 双辽市| 泗洪县| 郁南县| 从化市| 双柏县| 东明县| 马鞍山市| 罗源县| 惠东县| 杭锦后旗| 乌拉特前旗| 瓦房店市| 徐水县| 沿河| 察哈| 自治县| 岢岚县| 水城县| 六安市| 辽宁省| 邓州市| 元氏县| 广南县| 海城市| 定安县| 精河县| 晋中市|