找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Canonical Duality Theory; Unified Methodology David Yang Gao,Vittorio Latorre,Ning Ruan Book 2017 Springer International Publishing AG 201

[復(fù)制鏈接]
樓主: Madison
11#
發(fā)表于 2025-3-23 11:08:32 | 只看該作者
12#
發(fā)表于 2025-3-23 14:57:40 | 只看該作者
Advances in Mechanics and Mathematicshttp://image.papertrans.cn/c/image/221335.jpg
13#
發(fā)表于 2025-3-23 18:08:05 | 只看該作者
14#
發(fā)表于 2025-3-24 00:14:06 | 只看該作者
15#
發(fā)表于 2025-3-24 02:22:04 | 只看該作者
Thrombosis and Cerebrovascular Diseaseuch that the original nonconvex minimization problem is first reformulated as a convex–concave saddle point optimization problem, which is then solved by a quadratically perturbed primal–dual method. Numerical examples are illustrated. Comparing with the existing results, the proposed algorithm can achieve better performance.
16#
發(fā)表于 2025-3-24 09:57:14 | 只看該作者
Michal Kopecky,Marta Vomlelova,Peter Vojtas, but also for solving a wide class of challenging problems from real-world applications. This paper presents a brief review on this theory, its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. Particular emphasis is placed on its
17#
發(fā)表于 2025-3-24 13:25:37 | 只看該作者
Michal Kopecky,Marta Vomlelova,Peter Vojtaslly nonlinear partial differential equations in nonlinear elasticity is able to convert a unified algebraic equation, a complete set of analytical solutions are obtained in dual space for 3-D finite deformation problems governed by generalized neo-Hookean model. Both global and local extremal soluti
18#
發(fā)表于 2025-3-24 17:08:39 | 只看該作者
Spatiotemporal Co-occurrence Rulesnical duality theory and the associated pure complementary energy principle in nonlinear elasticity proposed by Gao in (Mech Res Commun 26:31–37, 1999, [.], Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, [.], Meccanica 34:169–198, 1999, [.]), we show that the general nonlinear p
19#
發(fā)表于 2025-3-24 21:42:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺州市| 梓潼县| 兴义市| 宜兰市| 永修县| 延吉市| 巫溪县| 天门市| 新干县| 吴江市| 台东县| 临汾市| 黎平县| 修水县| 射阳县| 始兴县| 昂仁县| 青浦区| 孝感市| 长海县| 连云港市| 永登县| 新营市| 南昌市| 龙山县| 台州市| 彭泽县| 晋州市| 饶平县| 重庆市| 肃北| 阿瓦提县| 阳原县| 林口县| 隆子县| 陵川县| 会泽县| 都匀市| 长葛市| 博罗县| 峨边|