找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Canard Cycles; From Birth to Transi Peter De Maesschalck,Freddy Dumortier,Robert Rouss Book 2021 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 13376|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:26:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Canard Cycles
副標(biāo)題From Birth to Transi
編輯Peter De Maesschalck,Freddy Dumortier,Robert Rouss
視頻videohttp://file.papertrans.cn/222/221033/221033.mp4
概述Provides a self-contained introduction to the study of families of slow-fast systems on surfaces.Contains a unified account of two decades of results on canard cycles.Presents essential techniques in
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Canard Cycles; From Birth to Transi Peter De Maesschalck,Freddy Dumortier,Robert Rouss Book 2021 The Editor(s) (if applicable) and The Auth
描述This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields.The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs..In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities.This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure..The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert‘s 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of tw
出版日期Book 2021
關(guān)鍵詞Canard cycles; Slow-fast systems; limit cycles; vector field; relaxation oscillations; slow-fast bifurcat
版次1
doihttps://doi.org/10.1007/978-3-030-79233-6
isbn_softcover978-3-030-79235-0
isbn_ebook978-3-030-79233-6Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Canard Cycles影響因子(影響力)




書目名稱Canard Cycles影響因子(影響力)學(xué)科排名




書目名稱Canard Cycles網(wǎng)絡(luò)公開度




書目名稱Canard Cycles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Canard Cycles被引頻次




書目名稱Canard Cycles被引頻次學(xué)科排名




書目名稱Canard Cycles年度引用




書目名稱Canard Cycles年度引用學(xué)科排名




書目名稱Canard Cycles讀者反饋




書目名稱Canard Cycles讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:43:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:25 | 只看該作者
Blow-up of Contact Pointsn extending the traditional methods of geometric singular perturbation theory near normally hyperbolic points to contact points. Besides presenting a full description of the blowing up of the well-known generic jump point and the generic turning point, extra properties are provided that play an impo
6#
發(fā)表于 2025-3-22 14:10:03 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:46 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:04 | 只看該作者
0071-1136 f results on canard cycles.Presents essential techniques in This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector f
10#
發(fā)表于 2025-3-23 07:25:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措勤县| 鄂温| 东港市| 竹溪县| 张家川| 四子王旗| 宝清县| 焦作市| 金寨县| 林口县| 鲁山县| 延边| 阳山县| 巴林左旗| 石棉县| 长汀县| 油尖旺区| 卓资县| 余庆县| 罗城| 金溪县| 洛扎县| 连云港市| 白河县| 辽阳市| 资兴市| 镇坪县| 怀仁县| 山东省| 黑龙江省| 张北县| 广丰县| 南丰县| 吕梁市| 邻水| 岑巩县| 交口县| 固安县| 太白县| 灵武市| 吉木萨尔县|