找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calibration and Parameterization Methods for the Libor Market Model; Christoph Hackl Book 2014 Springer Fachmedien Wiesbaden 2014 Forward

[復(fù)制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 13:07:39 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:52 | 只看該作者
Karin Egberts,Angelika Gensthaler Rebonato‘s popular linear exponential parametric function, see Brigo and Mercurio [2006]. To calibrate the LMM directly to market data, the volatility curve has to be "bootstraped", as ..(.) is modeled and therefore each caplet on its own.
13#
發(fā)表于 2025-3-23 21:55:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:49:31 | 只看該作者
EntwicklungspsychopharmakologieThe first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
16#
發(fā)表于 2025-3-24 09:18:25 | 只看該作者
17#
發(fā)表于 2025-3-24 12:46:05 | 只看該作者
Applications and Results,The first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
18#
發(fā)表于 2025-3-24 17:09:25 | 只看該作者
Calibration and Parameterization Methods for the Libor Market Model
19#
發(fā)表于 2025-3-24 21:14:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:55 | 只看該作者
Foundations of Mathematical Finance and Stochastic Calculus,ction we start with simple interest rate necessities and go on to financial Derivatives which are necessary to understand to correctly calibrate and use the model for pricing. The section 2.2 starts with the most important aspects in stochastic calculus which is the key step to understand and work w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上蔡县| 南丹县| 个旧市| 长岛县| 庆元县| 驻马店市| 赫章县| 叙永县| 红原县| 岑溪市| 朝阳县| 湘潭县| 柞水县| 长丰县| 九龙坡区| 荔波县| 东山县| 丁青县| 兰西县| 鄯善县| 五寨县| 湛江市| 怀柔区| 海丰县| 色达县| 上思县| 安仁县| 拜泉县| 兴仁县| 宾阳县| 五台县| 丹凤县| 桓仁| 讷河市| 隆尧县| 遂溪县| 鱼台县| 南江县| 松滋市| 临清市| 开封市|