找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Kaehlerian and Sasakian Manifolds; Kentaro Yano,Masahiro Kon Book 1983 Springer Science+Business Media New York 1983 ma

[復制鏈接]
樓主: 債務人
11#
發(fā)表于 2025-3-23 10:43:40 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:30 | 只看該作者
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
13#
發(fā)表于 2025-3-23 20:57:54 | 只看該作者
Structures on Riemannian Manifolds,ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
14#
發(fā)表于 2025-3-23 23:28:55 | 只看該作者
15#
發(fā)表于 2025-3-24 05:15:19 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:55 | 只看該作者
Submanifolds,he ambient manifold .to simplify the notation because it may cause no confusion. Let T(M) and T(M). denote the tangent and normal bundle of M respectively. The metric g and the connection .on .lead to invariant inner products and the connections on T(M) and T(M). We will define a connection on M explicitely.
17#
發(fā)表于 2025-3-24 13:14:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:55:27 | 只看該作者
Submanifolds, of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
19#
發(fā)表于 2025-3-24 21:19:28 | 只看該作者
6樓
20#
發(fā)表于 2025-3-25 00:57:49 | 只看該作者
6樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇州市| 公主岭市| 彭水| 文水县| 旌德县| 依安县| 印江| 陆川县| 乃东县| 保康县| 鸡东县| 揭阳市| 屯昌县| 阳谷县| 鄂托克前旗| 南开区| 屯昌县| 华池县| 东丰县| 恩平市| 方山县| 浙江省| 龙里县| 图们市| 翁源县| 和平区| 太湖县| 菏泽市| 革吉县| 互助| 成安县| 密山市| 奉贤区| 靖安县| 龙川县| 南阳市| 汉中市| 温泉县| 阳原县| 承德市| 手机|