找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Breaking Barriers with Generative Intelligence. Using GI to Improve Human Education and Well-Being; First International Azza Basiouni,Clau

[復制鏈接]
樓主: hierarchy
11#
發(fā)表于 2025-3-23 12:38:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:19:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:57 | 只看該作者
Mikrobasierte Verfahren der Datenanalyse,tions where machine learning models predict mental health crises from patterns in user data. Additionally, AI‘s integration into physical health apps that track and analyse user activity and physiological data highlights its role in promoting healthier lifestyle choices and preventive healthcare pra
14#
發(fā)表于 2025-3-23 23:39:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:02 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5 out the factors that define the use and adoption of generative AI and its effects on other social sustainability factors like education, diversity, and readiness. The study therefore assists in filling gaps within the literature on AI in education and is beneficial for students, policymakers, educa
16#
發(fā)表于 2025-3-24 10:06:39 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5adaptability to online education. The model‘s performance was evaluated using accuracy, precision, recall, and F1-score metrics. The Random Forest model achieved an accuracy of 88.3%. It showed high precision and recall for the ‘High’ and ‘Moderate’ adaptability classes but lower performance in pred
17#
發(fā)表于 2025-3-24 11:25:02 | 只看該作者
18#
發(fā)表于 2025-3-24 17:50:04 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5ayers with ReLU activation functions and dropout layers to prevent overfitting. The model is trained over 200 epochs with a batch size of 5, utilizing the Adam optimizer and categorical cross-entropy loss function. The results demonstrate the chatbot’s high accuracy and effectiveness, achieving an a
19#
發(fā)表于 2025-3-24 22:27:52 | 只看該作者
20#
發(fā)表于 2025-3-25 00:52:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
漯河市| 密云县| 天峻县| 云阳县| 海盐县| 福建省| 陵水| 轮台县| 崇义县| 建湖县| 色达县| 轮台县| 佛冈县| 新乡县| 大庆市| 萨嘎县| 江门市| 博兴县| 顺义区| 长宁区| 藁城市| 大渡口区| 竹山县| 淮南市| 霍州市| 内丘县| 诏安县| 庆阳市| 五常市| 建阳市| 邵阳市| 湛江市| 张家港市| 景洪市| 西平县| 宁南县| 柏乡县| 永吉县| 宿迁市| 广平县| 法库县|