找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bioinformatics Research and Applications; 20th International S Wei Peng,Zhipeng Cai,Pavel Skums Conference proceedings 2024 The Editor(s) (

[復(fù)制鏈接]
樓主: 使委屈
31#
發(fā)表于 2025-3-26 21:46:27 | 只看該作者
Vorl?ufiges über den Metallischen Zustandtions of medium-resolution cryo-EM maps in the EMDB could benefit from potentially more reliable AlphaFold models derived later after more structural templates become available in the PDB. To study the utility of AlphaFold-predicted models, we conducted systematic mapping between the PDB and AlphaFo
32#
發(fā)表于 2025-3-27 01:44:20 | 只看該作者
33#
發(fā)表于 2025-3-27 09:02:37 | 只看該作者
https://doi.org/10.1007/978-3-7091-3275-3ffold to maximize the number of increased duo-preservations between the filled scaffold and the reference genome. In [.], this problem was shown to be MAX-SNP-complete and can not be approximated within .. In this paper, we firstly improve the inapproximability gap to ., then we devise a new approxi
34#
發(fā)表于 2025-3-27 12:17:49 | 只看該作者
35#
發(fā)表于 2025-3-27 16:47:01 | 只看該作者
36#
發(fā)表于 2025-3-27 18:00:23 | 只看該作者
37#
發(fā)表于 2025-3-28 01:57:07 | 只看該作者
Schallschwingungen in Metallen,modules, our extensive experiments show that the Euclidean distances between learned features are highly related with the mutual exclusivity defined on the original data, and they can reveal more information compared to mutual exclusivity. Thus, we apply the Euclidean distances of learned gene featu
38#
發(fā)表于 2025-3-28 03:49:44 | 只看該作者
39#
發(fā)表于 2025-3-28 09:44:10 | 只看該作者
,LoopNetica: Predicting Chromatin Loops Using Convolutional Neural Networks and?Attention Mechanismstic data, which are not always available. To overcome this problem, we propose a new deep learning computational tool called LoopNetica by utilizing a combination of one-dimensional convolutional neural networks and a multi-head attention mechanism. It can accurately predict the formation of chromat
40#
發(fā)表于 2025-3-28 12:53:43 | 只看該作者
,Probabilistic and?Machine Learning Models for?the?Protein Scaffold Gap Filling Problem,stic algorithm to predict the missing amino acids in the gaps. The experimental results on both real and simulation data show that our proposed algorithms show promising results of 100% and close to 100% accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泊头市| 玉林市| 井陉县| 隆昌县| 安吉县| 湟源县| 宾川县| 巨野县| 满洲里市| 南陵县| 肥乡县| 嵊泗县| 台东县| 谢通门县| 静海县| 利川市| 元氏县| 吉林省| 永兴县| 台南市| 闽清县| 四川省| 阳新县| 临洮县| 霍林郭勒市| 梅州市| 武乡县| 大冶市| 咸丰县| 潼关县| 徐汇区| 兴国县| 宁远县| 凤凰县| 上栗县| 项城市| 衡山县| 亳州市| 灵川县| 渝北区| 喜德县|