找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Representation Learning on Visual Images; Learning to Hash for Zheng Zhang Book 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 10:43:14 | 只看該作者
Scalable Supervised Asymmetric Hashing,earns two distinctive hashing functions by minimizing regression loss for semantic label alignment and encoding loss for refined latent features. Notably, instead of utilizing only partial similarity correlations, SSAH directly employs the full-pairwise similarity matrix to prevent information loss
12#
發(fā)表于 2025-3-23 14:29:44 | 只看該作者
13#
發(fā)表于 2025-3-23 22:02:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:01 | 只看該作者
Ordinal-Preserving Latent Graph Hashing,similarities during the feature learning process. Additionally, well-designed latent subspace learning is incorporated to acquire noise-free latent features based on sparse-constrained supervised learning, fully leveraging the latent under-explored characteristics of data in subspace construction. L
15#
發(fā)表于 2025-3-24 03:50:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:04 | 只看該作者
Semantic-Aware Adversarial Training,criminative and semantic properties jointly. Adversarial examples are generated by maximizing the Hamming distance between hash codes of adversarial samples and mainstay features, validated for efficacy in adversarial attack trials. Notably, this chapter formulates the formalized adversarial trainin
17#
發(fā)表于 2025-3-24 13:19:55 | 只看該作者
shing techniques. These approaches can empower readers to proficiently grasp the fundamental principles of the traditional and state-of-the-art methods in binary representations, modeling, and learning. The the978-981-97-2114-6978-981-97-2112-2
18#
發(fā)表于 2025-3-24 16:41:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:53 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察隅县| 宜黄县| 壤塘县| 昭平县| 息烽县| 江永县| 法库县| 巩义市| SHOW| 宣恩县| 左云县| 德保县| 彩票| 大城县| 榆树市| 永平县| 木兰县| 炉霍县| 绥阳县| 遵义县| 商南县| 昆山市| 德兴市| 剑阁县| 凤山市| 益阳市| 班玛县| 姜堰市| 滨州市| 三门峡市| 乌鲁木齐市| 东安县| 琼海市| 集安市| 四子王旗| 岳阳市| 安丘市| 临朐县| 松江区| 桦南县| 漠河县|