找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Compendium; Marcel van Oijen Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive license

[復(fù)制鏈接]
樓主: CULT
41#
發(fā)表于 2025-3-28 15:00:35 | 只看該作者
42#
發(fā)表于 2025-3-28 19:15:18 | 只看該作者
Graphs, Hypergraphs, and Metagraphsfundamentally different from the simpler models we studied in the previous chapters; we can still write them as functions . of their input consisting of covariates . and parameters .. But the output . from the models will be multivariate, e.g. time series of different properties of an ecosystem. Tha
43#
發(fā)表于 2025-3-28 23:12:30 | 只看該作者
44#
發(fā)表于 2025-3-29 06:21:30 | 只看該作者
45#
發(fā)表于 2025-3-29 08:25:59 | 只看該作者
Metagraphs in Workflow and Process Analysisata likelihood function. The posterior distribution is then fully determined, and it encapsulates everything of interest. With the posterior in hand, we can make predictions with proper uncertainty quantification, we can carry out risk analysis and provide decision support. So the basic ideas are ex
46#
發(fā)表于 2025-3-29 15:13:24 | 只看該作者
47#
發(fā)表于 2025-3-29 16:48:14 | 只看該作者
The Algebraic Structure of Metagraphs(2) information about the nodes. So the graph is just the visible part of the model. GMs do not represent a new kind of statistical model; they are just helpful tools for analysing joint probability distributions. Every distribution can be represented by a GM, so whatever your research problem or mo
48#
發(fā)表于 2025-3-29 21:42:20 | 只看該作者
49#
發(fā)表于 2025-3-30 02:30:06 | 只看該作者
Erik Cuevas,Alberto Luque,Beatriz Riverapproach allows us to quantify predictive uncertainty when we use our models for prediction. And this is of course important for the user of these predictions, whether that user is us or someone to whom we report our results. Our probabilistic predictions allow calculation of risks and, more generall
50#
發(fā)表于 2025-3-30 07:01:25 | 只看該作者
Prajna Kunche,K. V. V. S. Reddyred, . (BDT) (Berger, . (2nd ed.). Springer Series in Statistics. Springer, 1985; Jaynes, .. Cambridge University Press, 2003; Lindley, . (2nd ed.). Wiley, 1991; Van Oijen and Brewer, ., SpringerBriefs in Statistics. Springer International Publishing, 2022; Williams and Hooten (Ecol Appl 26:1930–194
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖州市| 盖州市| 太原市| 太仓市| 和田市| 西吉县| 桓仁| 扶绥县| 库车县| 射洪县| 武山县| 阳曲县| 莱州市| 涞水县| 翁源县| 镇赉县| 呼图壁县| 万全县| 三都| 仁化县| 盈江县| 乳山市| 三穗县| 阜南县| 黑水县| 平泉县| 永新县| 中宁县| 温宿县| 那曲县| 澎湖县| 阳春市| 万山特区| 科技| 漳平市| 云南省| 灌阳县| 双桥区| 乐亭县| 玉林市| 西峡县|