找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Oka Theory in Several Complex Variables; Junjiro Noguchi Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 10:30:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:27 | 只看該作者
Junjiro NoguchiServes as a textbook in lecture courses of function theory of several complex variables right after one variable.Is based on Oka’s first coherence theorem and the Joku-Iko Principle.Proves Levi‘s prob
13#
發(fā)表于 2025-3-23 19:54:56 | 只看該作者
14#
發(fā)表于 2025-3-24 01:35:45 | 只看該作者
15#
發(fā)表于 2025-3-24 05:04:43 | 只看該作者
16#
發(fā)表于 2025-3-24 08:05:34 | 只看該作者
17#
發(fā)表于 2025-3-24 11:11:54 | 只看該作者
Textbook 2024 mainly concerned with the Three Big Problems (Approximation, Cousin, Pseudoconvexity) that were solved by Kiyoshi Oka and form the basics of the theory. The purpose of the volume is to serve as a textbook in lecture courses right after complex function theory of one variable. The presentation aims
18#
發(fā)表于 2025-3-24 18:49:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:58 | 只看該作者
,Pseudoconvex Domains II —Solution, combined with the Joku-Iko Principle, and the second is due to H. Grauert (1958) through L. Schwartz’s Fredholm Theorem for compact operators and the bumping method. The comparison is interesting. Each proof has its own advantage.
20#
發(fā)表于 2025-3-25 00:31:52 | 只看該作者
0172-5939 erence theorem and the Joku-Iko Principle.Proves Levi‘s prob.This book provides a new, comprehensive, and self-contained account of Oka theory as an introduction to function theory of several complex variables, mainly concerned with the Three Big Problems (Approximation, Cousin, Pseudoconvexity) tha
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原阳县| 双桥区| 吴桥县| 屏东县| 青铜峡市| 松原市| 巴彦县| 东乡县| 临桂县| 江永县| 黔西| 修文县| 黔西| 万安县| 宝应县| 宁武县| 凤城市| 南充市| 兴安县| 澄江县| 甘肃省| 东乌珠穆沁旗| 江都市| 波密县| 北安市| 凤凰县| 普格县| 大丰市| 凌云县| 区。| 浙江省| 吐鲁番市| 赤峰市| 临夏市| 府谷县| 平江县| 紫云| 体育| 澄城县| 新郑市| 手机|