找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Business Intelligence and Big Data; 7th European Summer Esteban Zimányi Conference proceedings 2018 Springer Nature Switzerland AG 2018 bu

[復制鏈接]
樓主: choleric
21#
發(fā)表于 2025-3-25 06:59:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:50 | 只看該作者
978-3-319-96654-0Springer Nature Switzerland AG 2018
23#
發(fā)表于 2025-3-25 11:51:34 | 只看該作者
,Temporal Data Management – An Overview,erspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by
24#
發(fā)表于 2025-3-25 18:52:05 | 只看該作者
,Three Big Data Tools for a Data Scientist’s Toolbox, in every big data scientists’ toolbox, including approximate frequency counting of frequent items, cardinality estimation of very large sets, and fast nearest neighbor search in huge data collections.
25#
發(fā)表于 2025-3-25 20:19:41 | 只看該作者
Sebastian Müller,Christoph Gusyerspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by
26#
發(fā)表于 2025-3-26 03:09:23 | 只看該作者
Yolande Stolte,Rachael Craufurd Smith in every big data scientists’ toolbox, including approximate frequency counting of frequent items, cardinality estimation of very large sets, and fast nearest neighbor search in huge data collections.
27#
發(fā)表于 2025-3-26 04:35:56 | 只看該作者
An Introduction to Data Profiling,tadata discovery is known as data profiling. Profiling activities range from ad-hoc approaches, such as eye-balling random subsets of the data or formulating aggregation queries, to systematic inference of metadata via profiling algorithms. In this course, we will discuss the importance of data prof
28#
發(fā)表于 2025-3-26 08:27:15 | 只看該作者
29#
發(fā)表于 2025-3-26 14:35:22 | 只看該作者
30#
發(fā)表于 2025-3-26 17:55:04 | 只看該作者
Historical Graphs: Models, Storage, Processing,t corresponds to the state of the graph at the corresponding time instant. There is rich information in the history of the graph not present in just the current snapshot of the graph. In this chapter, we present logical and physical models, query types, systems and algorithms for managing historical
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武邑县| 宁乡县| 德阳市| 乌兰察布市| 禄丰县| 镇江市| 永嘉县| 西林县| 石屏县| 博白县| 怀安县| 吴川市| 潜江市| 扬中市| 德昌县| 青铜峡市| 颍上县| 平乐县| 呼和浩特市| 鄂温| 克拉玛依市| 山阴县| 襄城县| 墨竹工卡县| 新龙县| 且末县| 洪雅县| 富民县| 阿瓦提县| 张家川| 南昌市| 探索| 股票| 碌曲县| 酒泉市| 蓝山县| 海城市| 镇平县| 仁怀市| 天津市| 瑞安市|