找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries; Tongran Qin Book 2017 Springer International Pub

[復(fù)制鏈接]
樓主: 銀河
21#
發(fā)表于 2025-3-25 04:33:52 | 只看該作者
Convection at Atmospheric Conditions,Most of the intuition on which the design of current two-phase thermal management devices, such as heat pipes, is based on studies of convection at atmospheric conditions. The strength of the two main forces driving convection, buoyancy and thermocapillarity, is most commonly described in terms of the nondimensional parameters
22#
發(fā)表于 2025-3-25 08:55:42 | 只看該作者
23#
發(fā)表于 2025-3-25 14:43:28 | 只看該作者
24#
發(fā)表于 2025-3-25 19:33:02 | 只看該作者
Convection Under Pure Vapor, at least to some extent, under atmospheric conditions when the gas phase is dominated by noncondensables (air). On the other hand, it is well known that noncondensables significantly impede phase change and hence degrade the thermal performances of two-phase cooling devices [.]. Hence, their optima
25#
發(fā)表于 2025-3-25 21:46:12 | 只看該作者
Convection at Reduced Pressures,c conditions and under pure vapor, respectively. Recent fundamental studies of this problem were mainly motivated by applications to thermal management. Although the ideal operating conditions for two-phase cooling devices such as thermosyphons, heat pipes, and heat spreaders corresponds to the pure
26#
發(fā)表于 2025-3-26 03:18:45 | 只看該作者
Linear Stability Analysis, formation of a stationary pattern at .. = .(1). This study by Priede and Gerbeth [.] is, however, based on a one-layer model where phase change is neglected and the free surface is considered adiabatic. While this description may be acceptable for nonvolatile liquids or at high concentrations of no
27#
發(fā)表于 2025-3-26 05:54:30 | 只看該作者
Conclusions and Recommendations,d only atmospheric conditions, were extended in this thesis to reduced pressures. This thesis work, which is hence more relevant for thermal management applications, used a combination of numerical simulations and analytical techniques. The main conclusions and contributions of this work, as well as
28#
發(fā)表于 2025-3-26 11:28:20 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:40 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵州省| 修文县| 新泰市| 江阴市| 滕州市| 大港区| 调兵山市| 福安市| 兴宁市| 蓝山县| 开封县| 正蓝旗| 迭部县| 大足县| 黄浦区| 温泉县| 万盛区| 苏尼特左旗| 镇坪县| 通河县| 东方市| 望都县| 济源市| 凤冈县| 华阴市| 定兴县| 鹤壁市| 建始县| 蒙山县| 资兴市| 眉山市| 甘肃省| 姜堰市| 长宁区| 临城县| 巴林左旗| 焦作市| 东山县| 全州县| 安图县| 库车县|