找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg

[復(fù)制鏈接]
樓主: Lensometer
31#
發(fā)表于 2025-3-27 00:14:10 | 只看該作者
32#
發(fā)表于 2025-3-27 05:03:17 | 只看該作者
Distributionen und Greensche Funktion,result of this section is that all BN-pairs characterized in the title are “provided by” algebraic simple groups over finite fields in the known standard way (for a precise statement, cf. theorem 11.7). This is an easy consequence of the analogous statement for buildings (theorem 11.4), which itself
33#
發(fā)表于 2025-3-27 05:35:31 | 只看該作者
Distributionen und Greensche Funktion,ings of rank 2. Here, similar results are obtained for BN-pairs (13.5, 13.32); it will be seen that the proofs are considerably simpler than that of 4.1.2. In 13.5, an arbitrary group G with BN-pair (B,N) appears as an amalgamated sum of the parabolic subgroups “of rank 2” containing B, but we shall
34#
發(fā)表于 2025-3-27 10:52:26 | 只看該作者
35#
發(fā)表于 2025-3-27 14:51:56 | 只看該作者
Buildings of Spherical Type and Finite BN-Pairs978-3-540-38349-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
36#
發(fā)表于 2025-3-27 20:13:23 | 只看該作者
37#
發(fā)表于 2025-3-28 00:57:36 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:40 | 只看該作者
39#
發(fā)表于 2025-3-28 07:34:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:46 | 只看該作者
Buildings,onditions hold:. It is clear that Δ is a chamber complex and that the apartments are isomorphic subcomplexes. We shall see (3.15) that the isomorphism class of the apartments is entirely determined by Δ. More precisely, it can be shown that if a complex Δ possesses a set α of subcomplexes such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普格县| 呼玛县| 育儿| 德昌县| 吉隆县| 台中市| 弥勒县| 平武县| 红河县| 吴忠市| 翁牛特旗| 松桃| 驻马店市| 凤庆县| 五常市| 南部县| 长春市| 镇远县| 遂宁市| 神木县| 布尔津县| 青海省| 宁德市| 册亨县| 湘乡市| 宁城县| 杂多县| 朝阳区| 安多县| 象州县| 南昌市| 饶阳县| 蓬安县| 北碚区| 西峡县| 安宁市| 益阳市| 扶风县| 凤冈县| 行唐县| 尼勒克县|