找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion and its Applications to Mathematical Analysis; école d‘été de Proba Krzysztof Burdzy Book 2014 Springer International Publi

[復制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 13:20:28 | 只看該作者
978-3-319-04393-7Springer International Publishing Switzerland 2014
12#
發(fā)表于 2025-3-23 16:57:43 | 只看該作者
Architekt Martin Kohlbauer - Ein Portrait,The chapter provides a short general review of Brownian motion and its place in probability theory. We also review some basic facts and formulas.
13#
發(fā)表于 2025-3-23 20:06:47 | 只看該作者
,Hauptschule Zwentendorf 2000–2003,This chapter is devoted to new probabilistic proofs of results previously proved using analytic techniques.
14#
發(fā)表于 2025-3-23 22:50:41 | 只看該作者
,Wohnhof Fuchsenfeld 1999–2003,This chapter is devoted to a general overview of the “hot spots” conjecture. To this day, the conjecture has been proved only for a very limited family of domains. Hence, it has a great potential as a source of interesting problems (related questions) and as a testing ground for new techniques.
15#
發(fā)表于 2025-3-24 04:12:10 | 只看該作者
,Fernheizwerk Süd, Wien 23 1993–1996,This chapter contains some simple facts and more advanced results on Nuemann eigenfunctions related to the hot spots conjecture.
16#
發(fā)表于 2025-3-24 09:18:51 | 只看該作者
17#
發(fā)表于 2025-3-24 14:13:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:11:04 | 只看該作者
https://doi.org/10.1057/9781137275523The hot spots problem is closely related to the problem of finding the location of the nodal line of the first non-constant eigenfunction. The chapter contains a few results on the latter problem.
19#
發(fā)表于 2025-3-24 21:31:09 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:43 | 只看該作者
Probabilistic Proofs of Classical Theorems,This chapter is devoted to new probabilistic proofs of results previously proved using analytic techniques.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鄂尔多斯市| 留坝县| 惠安县| 常山县| 咸宁市| 清涧县| 肇东市| 高碑店市| 永登县| 江川县| 渑池县| 佳木斯市| 额济纳旗| 兰坪| 延寿县| 琼结县| 中山市| 元江| 延庆县| 晋宁县| 庆安县| 项城市| 南宫市| 洞口县| 平利县| 松江区| 同仁县| 元氏县| 郧西县| 福州市| 泸州市| 漾濞| 东方市| 汉中市| 潮安县| 休宁县| 新乡县| 贞丰县| 治多县| 额尔古纳市| 宁乡县|