找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion; Elements of Colloid Albert P. Philipse Textbook 2018 Springer Nature Switzerland AG 2018 Understanding colloidal suspenti

[復(fù)制鏈接]
樓主: 呻吟
21#
發(fā)表于 2025-3-25 05:42:56 | 只看該作者
Hing Chao,Daniel Jaquet,Loretta Kimwnian motion’ is the habitual term for colloids; the naming is appropriate as it was Robert Brown who was the first to publish on systematic observations of colloids in motion. Below we will outline Brown’s findings and summarize their history of reception, with a crucial role for the kinetic theory
22#
發(fā)表于 2025-3-25 10:08:16 | 只看該作者
23#
發(fā)表于 2025-3-25 12:18:23 | 只看該作者
https://doi.org/10.1007/978-981-19-2037-0e magnification of the microscope (Fig.?.). Thus one cannot differentiate this distance unambiguously with respect to time to obtain a velocity. Instead we have to focus on the . of the particle, defined as the shortest distance between two positions of the colloid. How the squared displacement by d
24#
發(fā)表于 2025-3-25 16:03:07 | 只看該作者
https://doi.org/10.1007/978-981-19-2037-0in vast numbers interstellar dust clouds.) is a dual process: the thermal motion of colloids in any direction is, owing to the liquid’s incompressibility, accompanied by oppositely directed flow in the colloid’s surroundings.
25#
發(fā)表于 2025-3-25 21:38:35 | 只看該作者
Longobard Warriors in the Seprio Judicariang) colloidal particles to encounter each other. To get an idea of the time scale involved we compute the time taken by a sphere of radius . to diffuse a mean-square-displacement equal to .—the configurational relaxation time . introduced in Chap.?.. For spheres in water at room temperature.
26#
發(fā)表于 2025-3-26 00:47:26 | 只看該作者
27#
發(fā)表于 2025-3-26 05:25:22 | 只看該作者
Brownian Motion978-3-319-98053-9Series ISSN 2192-4791 Series E-ISSN 2192-4805
28#
發(fā)表于 2025-3-26 10:13:13 | 只看該作者
https://doi.org/10.1007/978-981-19-2037-0in vast numbers interstellar dust clouds.) is a dual process: the thermal motion of colloids in any direction is, owing to the liquid’s incompressibility, accompanied by oppositely directed flow in the colloid’s surroundings.
29#
發(fā)表于 2025-3-26 13:16:44 | 只看該作者
30#
發(fā)表于 2025-3-26 17:43:23 | 只看該作者
https://doi.org/10.1007/978-3-319-98053-9Understanding colloidal suspentions; Thermal diffusion; Stokes-Einstein diffusion coefficient; Fick‘s l
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘肃省| 乾安县| 贵阳市| 九台市| 龙陵县| 石家庄市| 老河口市| 双柏县| 贞丰县| 微山县| 洛宁县| 改则县| 东阳市| 花垣县| 宁明县| 红原县| 平江县| 南丰县| 依安县| 清水县| 称多县| 开平市| 祁东县| 南陵县| 同心县| 全南县| 彰化县| 潮州市| 高阳县| 周口市| 贵阳市| 萨嘎县| 冀州市| 新蔡县| 炉霍县| 江川县| 宿州市| 武功县| 宜春市| 万安县| 高唐县|