找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bringing Machine Learning to Software-Defined Networks; Zehua Guo Book 2022 The Author(s), under exclusive license to Springer Nature Sing

[復(fù)制鏈接]
樓主: 涌出
11#
發(fā)表于 2025-3-23 09:49:01 | 只看該作者
Book 2022y taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.
12#
發(fā)表于 2025-3-23 17:40:43 | 只看該作者
13#
發(fā)表于 2025-3-23 19:38:00 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:58 | 只看該作者
15#
發(fā)表于 2025-3-24 04:01:40 | 只看該作者
Cecilia Pahlberg,Magnus Perssonamework for each agent in the MARL model. The DRL-based solution takes the workload pattern in the control plane as input and generates the migration decision as the output. When training is done, the DRL agent can quickly and accurately decide how to migrate switches among the controllers.
16#
發(fā)表于 2025-3-24 07:05:33 | 只看該作者
17#
發(fā)表于 2025-3-24 12:13:34 | 只看該作者
18#
發(fā)表于 2025-3-24 15:04:19 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:34 | 只看該作者
Multi-Agent Reinforcement Learning-Based Controller Load Balancing in SD-WANs,amework for each agent in the MARL model. The DRL-based solution takes the workload pattern in the control plane as input and generates the migration decision as the output. When training is done, the DRL agent can quickly and accurately decide how to migrate switches among the controllers.
20#
發(fā)表于 2025-3-25 00:41:01 | 只看該作者
Amjad Hadjikhani,Pervez Ghauri,Jan JohansonIn this chapter, we introduce software-defined networking, and its two typical application scenarios: wide area networks and data center networks. We also briefly introduce emerging machine learning techniques to improve network performance that are used in the rest of this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郓城县| 永福县| 绩溪县| 池州市| 重庆市| 阿拉善右旗| 黄梅县| 蚌埠市| 桦南县| 和田市| 深圳市| 黑龙江省| 天全县| 泰安市| 太原市| 麻城市| 彩票| 宜章县| 三亚市| 阿克苏市| 岐山县| 崇明县| 宿迁市| 吉林市| 齐河县| 博乐市| 阿拉善左旗| 鲜城| 酒泉市| 枞阳县| 湖南省| 财经| 盐山县| 平江县| 龙陵县| 平乡县| 庆元县| 高要市| 新竹市| 浑源县| 宁海县|