找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries; 8th International Wo Spyridon Bakas,Alessandro Crimi,Reuben Dor

[復(fù)制鏈接]
樓主: Washington
41#
發(fā)表于 2025-3-28 15:41:49 | 只看該作者
42#
發(fā)表于 2025-3-28 20:24:54 | 只看該作者
P. Cerletti,F. Bonomi,S. Paganif segmentation masks of the fixed and moving volumes. These masks are then used to attend to the input volume, which are then provided as inputs to a registration network in the second step. The registration network computes the deformation field to perform the alignment between the fixed and the mo
43#
發(fā)表于 2025-3-28 23:03:37 | 只看該作者
Molar Masses and Molar Mass Distributionse appearance changes. This paper describes our contribution to the registration of the longitudinal brain MRI task of the Brain Tumor Sequence Registration Challenge 2022 (BraTS-Reg 2022). We developed an enhanced unsupervised learning-based method that extends our previously developed registration
44#
發(fā)表于 2025-3-29 03:28:47 | 只看該作者
45#
發(fā)表于 2025-3-29 10:33:57 | 只看該作者
https://doi.org/10.1007/978-1-4615-7367-8In this challenge, we proposed an unsupervised domain adaptation framework for cross-modality vestibular schwannoma (VS) and cochlea segmentation and Koos grade prediction. We learn the shared representation from both ceT1 and hrT2 images and recover another modality from the latent representation,
46#
發(fā)表于 2025-3-29 13:09:39 | 只看該作者
47#
發(fā)表于 2025-3-29 15:43:58 | 只看該作者
Polymer crystallization theories,sing cross-modality segmentation performance by distilling knowledge from a label-rich source domain to a target domain without labels. In this work, we propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures?. Vestibular Schwannoma (VS) and C
48#
發(fā)表于 2025-3-29 23:21:42 | 只看該作者
Timothy A. Springer,Jay C. Unkelessy leveraging labeled contrast-enhanced T1 scans. The 2022 edition extends the segmentation task by including multi-institutional scans. In this work, we proposed an unpaired cross-modality segmentation framework using data augmentation and hybrid convolutional networks. Considering heterogeneous dis
49#
發(fā)表于 2025-3-30 00:38:56 | 只看該作者
Dolph O. Adams,Michael G. Hannaare contrast-enhanced T1 (ceT1), with a growing interest in high-resolution T2 images (hrT2) to replace ceT1, which involves the use of a contrast agent. As hrT2 images are currently scarce, it is less likely to train robust machine learning models to segment VS or other brain structures. In this wo
50#
發(fā)表于 2025-3-30 05:06:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉善县| 镇安县| 柳州市| 灵石县| 轮台县| 桐乡市| 铁岭市| 乳山市| 侯马市| 尼木县| 宜章县| 玉龙| 铜川市| 鹤峰县| 汾西县| 丽水市| 河东区| 紫阳县| 南丰县| 白沙| 定远县| 城固县| 芮城县| 成武县| 积石山| 宜丰县| 永济市| 嘉荫县| 蒲城县| 保德县| 绥滨县| 邛崃市| 兰州市| 八宿县| 闸北区| 呼图壁县| 施秉县| 通海县| 甘孜县| 喀什市| 额济纳旗|