找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 5th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復制鏈接]
樓主: Diverticulum
41#
發(fā)表于 2025-3-28 15:48:16 | 只看該作者
HPMA-Anticancer Drug Conjugates the BraTS test set, revealed that our method delivers accurate brain tumor segmentation, with the average DICE score of 0.72, 0.86, and 0.77 for the enhancing tumor, whole tumor, and tumor core, respectively. The total time required to process one study using our approach amounts to around 20?s.
42#
發(fā)表于 2025-3-28 22:38:55 | 只看該作者
43#
發(fā)表于 2025-3-29 01:42:12 | 只看該作者
Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIsn this work, we explore best practices of 3D semantic segmentation, including conventional encoder-decoder architecture, as well combined loss functions, in attempt to further improve the segmentation accuracy. We evaluate the method on BraTS 2019 challenge.
44#
發(fā)表于 2025-3-29 04:38:12 | 只看該作者
Multi-modal U-Nets with Boundary Loss and Pre-training for Brain Tumor Segmentation the BraTS test set, revealed that our method delivers accurate brain tumor segmentation, with the average DICE score of 0.72, 0.86, and 0.77 for the enhancing tumor, whole tumor, and tumor core, respectively. The total time required to process one study using our approach amounts to around 20?s.
45#
發(fā)表于 2025-3-29 09:52:24 | 只看該作者
Hybrid Labels for Brain Tumor Segmentation strategies of residual-dense connections, multiple rates of an atrous convolutional layer on popular 3D U-Net architecture. To train and validate our proposed algorithm, we used BRATS 2019 different datasets. The results are promising on the different evaluation metrics.
46#
發(fā)表于 2025-3-29 11:35:21 | 只看該作者
0302-9743 p, BrainLes 2019, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge, as well as the tutorial session on Tools Allowing Clinical Translation of Image Comput
47#
發(fā)表于 2025-3-29 19:02:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:00:14 | 只看該作者
49#
發(fā)表于 2025-3-30 01:07:33 | 只看該作者
Semi-supervised Variational Autoencoder for Survival Prediction used, thereby increasing its generalization properties. Due to its semi-supervised nature, the method can learn to classify survival time by using a relatively small number of labeled subjects. We validate our model on the publicly available dataset from the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019.
50#
發(fā)表于 2025-3-30 05:45:38 | 只看該作者
Detection and Segmentation of Brain Tumors from MRI Using U-Nets time of a single input volume amounts to around 15? s using a single GPU. The preliminary experiments over the BraTS’19 validation set revealed that our approach delivers high-quality tumor delineation and offers instant segmentation.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东明县| 梁山县| 高密市| 正定县| 柳河县| 九台市| 神木县| 南川市| 津市市| 齐河县| 安平县| 宜宾市| 娄底市| 吐鲁番市| 厦门市| 青海省| 永丰县| 新兴县| 青海省| 行唐县| 三明市| 环江| 泰安市| 广河县| 南汇区| 武平县| 无棣县| 平泉县| 如东县| 新郑市| 乐清市| 凤阳县| 沁源县| 石首市| 临桂县| 韩城市| 波密县| 嘉兴市| 太谷县| 海安县| 阳朔县|