找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brain Informatics; International Confer Yi Zeng,Yong He,Qingming Luo Conference proceedings 2017 Springer International Publishing AG 2017

[復(fù)制鏈接]
查看: 26463|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:37:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brain Informatics
期刊簡(jiǎn)稱International Confer
影響因子2023Yi Zeng,Yong He,Qingming Luo
視頻videohttp://file.papertrans.cn/191/190193/190193.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brain Informatics; International Confer Yi Zeng,Yong He,Qingming Luo Conference proceedings 2017 Springer International Publishing AG 2017
影響因子This book constitutes the refereed proceedings of the InternationalConference on Brain Informatics, BI 2017, held in Beijing, China, inNovember 2017.The 31 revised full paperswere carefully reviewed and selected from 64 submissions. BI addresses the computational, cognitive, physiological, biological, physical,ecological and social perspectives of brain informatics, as well as topics related to.mental health and well-being..
Pindex Conference proceedings 2017
The information of publication is updating

書目名稱Brain Informatics影響因子(影響力)




書目名稱Brain Informatics影響因子(影響力)學(xué)科排名




書目名稱Brain Informatics網(wǎng)絡(luò)公開度




書目名稱Brain Informatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brain Informatics被引頻次




書目名稱Brain Informatics被引頻次學(xué)科排名




書目名稱Brain Informatics年度引用




書目名稱Brain Informatics年度引用學(xué)科排名




書目名稱Brain Informatics讀者反饋




書目名稱Brain Informatics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:54:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:43 | 只看該作者
地板
發(fā)表于 2025-3-22 07:55:29 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:09 | 只看該作者
Operating the System, Version 2,g and expression of affective pattern, and then improve the accuracy of recognition. The accuracy of the proposed multi-layer EEG-ER system is compared with various feature extraction methods. For analysis results, average and maximum classification rates of 64% and 67.0% were obtained for arousal and 66.6% and 76.0% for valence.
6#
發(fā)表于 2025-3-22 15:55:47 | 只看該作者
Learning Music Emotions via Quantum Convolutional Neural Networkms as well as the state-of-the-art in the task of music emotion classification. Moreover, we provide demonstration experiment to explain the good performance of the proposed technique from the perspective of physics and psychology.
7#
發(fā)表于 2025-3-22 20:49:09 | 只看該作者
EEG-Based Emotion Recognition via Fast and Robust Feature Smoothingesults on the well-known DEAP dataset demonstrate the effectiveness of our approach. Comparing to other studies on the same dataset, ours achieves the shortest feature processing time and the highest classification accuracy on emotion recognition in the valence-arousal quadrant space.
8#
發(fā)表于 2025-3-22 22:25:05 | 只看該作者
9#
發(fā)表于 2025-3-23 01:55:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:33:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
房山区| 石台县| 东阳市| 平陆县| 凤城市| 静安区| 平利县| 永胜县| 前郭尔| 斗六市| 西青区| 海原县| 永春县| 呈贡县| 宜兴市| 伊吾县| 纳雍县| 平遥县| 迁安市| 克什克腾旗| 西昌市| 阳原县| 松原市| 商河县| 濮阳市| 应用必备| 永修县| 遂宁市| 通渭县| 萝北县| 乐昌市| 仪陇县| 得荣县| 武城县| 平远县| 古蔺县| 陇川县| 安宁市| 新田县| 醴陵市| 剑阁县|