找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 12:29:56 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:36 | 只看該作者
,A Beginner’s Guide to Using a Webcam,In this chapter we present results concerning the boundedness and compactness of integral transforms generated by various types of fractional integrals.
13#
發(fā)表于 2025-3-23 18:07:13 | 只看該作者
14#
發(fā)表于 2025-3-23 22:13:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:05:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:12 | 只看該作者
Problems,In this section we list some problems which seem to have resisted solution up to now.
17#
發(fā)表于 2025-3-24 11:42:49 | 只看該作者
Ball Fractional Integrals,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
18#
發(fā)表于 2025-3-24 16:13:33 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:35 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:10 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽库县| 古浪县| 鄢陵县| 天峻县| 将乐县| 房产| 鹤壁市| 蚌埠市| 北宁市| 尚义县| 蓝田县| 台南市| 大理市| 安远县| 松溪县| 普兰店市| 巴林右旗| 墨玉县| 万盛区| 沽源县| 曲水县| 望奎县| 博乐市| 崇义县| 长寿区| 花莲市| 万安县| 景泰县| 穆棱市| 泸定县| 涞源县| 邢台县| 云梦县| 彭山县| 札达县| 彭阳县| 德清县| 汉川市| 柳江县| 德钦县| 渭南市|