找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded Queries in Recursion Theory; William I. Gasarch,Georgia A. Martin Book 1999 Springer Science+Business Media New York 1999 Computab

[復(fù)制鏈接]
樓主: enamel
11#
發(fā)表于 2025-3-23 11:57:16 | 只看該作者
12#
發(fā)表于 2025-3-23 15:53:01 | 只看該作者
Q Versus QCset . ∈ Q(., .): there is an oracle Turing machine M. for deciding . with . queries to . such that, for all .,., the .(.) computation converges after making at most . queries to .. This is equivalent to saying that . decides . with . queries to . and, for every . and every string σ ∈ {0,1}., the .(.) computation converges (see Notation 1.2.19)
13#
發(fā)表于 2025-3-23 19:06:24 | 只看該作者
troduce notation, conventions, and definitions to be used throughout the book. In Section 1.2 we present further notation and definitions and review some basics from recursion theory. In Section 1.3 we present some concepts from recursion theory that are standard tools of the trade for recursion the
14#
發(fā)表于 2025-3-24 00:18:25 | 只看該作者
H.-E. Gumlich,A. Zeinert,R. Mauch, the least . such that there exists a set . for which C. ∈ FQ(.,.), but also the number of queries to . . that are required to compute C.. (Note that, numerically speaking, the former complexity cannot exceed the latter.)
15#
發(fā)表于 2025-3-24 02:56:24 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:07 | 只看該作者
https://doi.org/10.1007/978-3-642-79017-1ajor results found in each. All references in this chapter to numbered theorems, definitions, etc. apply to items in this book, not to items in the individual papers. The papers covered in this bibliography are arranged in alphabetical order by authors’ names
17#
發(fā)表于 2025-3-24 11:56:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:41:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:33 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:59 | 只看該作者
Bioluminescence and Chemiluminescence,We define several terms and pose many questions. These terms are used throughout the book, and all of the questions are addressed in the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐安县| 奉新县| 广平县| 黑山县| 临邑县| 连南| 三门县| 通河县| 湘阴县| 南平市| 黑山县| 普格县| 株洲市| 武清区| 阿瓦提县| 临潭县| 吴川市| 无锡市| 左云县| 泾源县| 泸溪县| 甘南县| 汉川市| 关岭| 西林县| 卓尼县| 临西县| 漯河市| 曲靖市| 伊春市| 奉化市| 四子王旗| 绥江县| 榆树市| 蕲春县| 石城县| 独山县| 永和县| 凯里市| 陇西县| 祁门县|