找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1999 Springer Science+Business Media Dordrecht 1999 Boundary v

[復制鏈接]
樓主: GALL
11#
發(fā)表于 2025-3-23 10:11:41 | 只看該作者
,Green’s Formulas and Theorems on Complete Collection of Isomorphisms for General Elliptic Boundary In the bounded domain . ? .. with the boundary . ? .. we consider the elliptic boundary value problem
12#
發(fā)表于 2025-3-23 16:22:53 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/b/image/190043.jpg
13#
發(fā)表于 2025-3-23 18:59:59 | 只看該作者
https://doi.org/10.1007/978-94-015-9275-8Boundary value problem; Operator theory; distribution; functional analysis; partial differential equatio
14#
發(fā)表于 2025-3-24 00:20:38 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:29 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:19 | 只看該作者
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k?) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ? = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k?), and Γ. ∩ Γ. =? for .
18#
發(fā)表于 2025-3-24 16:40:15 | 只看該作者
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k?) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ? = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k?), and Γ. ∩ Γ. =? for .
19#
發(fā)表于 2025-3-24 21:05:24 | 只看該作者
https://doi.org/10.1007/978-3-540-85818-8ions (we mention here [Ler], [G?r], [Vla], [H?r], the survey [VoG], and the bibliography given there). In this note the Cauchy problem for a system strictly hyperbolic in the Leray—Volevich sense is studied in the complete scale of spaces of Sobolev type depending on real parameters . and τ; . chara
20#
發(fā)表于 2025-3-24 23:15:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东山县| 天峨县| 临颍县| 孟村| 西安市| 邛崃市| 阳朔县| 克拉玛依市| 卢氏县| 武安市| 高邮市| 内乡县| 宽甸| 台州市| 朝阳市| 会宁县| 德钦县| 建宁县| 达日县| 余庆县| 七台河市| 阜平县| 万安县| 泾阳县| 卓资县| 临清市| 陇南市| 松阳县| 霞浦县| 乐业县| 榕江县| 昭苏县| 如东县| 固始县| 迭部县| 涞源县| 卢湾区| 商都县| 青冈县| 铁力市| 全椒县|