找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure; Pascal Auscher,Moritz Egert Book 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: 有作用
31#
發(fā)表于 2025-3-26 22:23:53 | 只看該作者
Preliminaries on Operator Theory,In this chapter, we introduce the elliptic operators used in this monograph and recall their main properties in the . setting. We also recall material on (bi)sectorial operators and their holomorphic functional calculus.
32#
發(fā)表于 2025-3-27 02:07:04 | 只看該作者
33#
發(fā)表于 2025-3-27 05:38:19 | 只看該作者
34#
發(fā)表于 2025-3-27 10:45:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:32:54 | 只看該作者
Identification of Adapted Hardy Spaces,This chapter is concerned with identifying three pre-Hardy spaces, ., ., and ., that play a crucial role for Dirichlet and regularity problems, with classical smoothness spaces.
36#
發(fā)表于 2025-3-27 20:56:07 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:06 | 只看該作者
Riesz Transform Estimates: Part II,We come back to the Riesz transform interval . defined in (.), the endpoints of which we have denoted by .(.). In Chap. . we have characterized the endpoints of the part of ?(.) in (1, .). The identification theorem for adapted Hardy spaces allows us to complete the discussion in the full range of exponents.
38#
發(fā)表于 2025-3-28 04:48:07 | 只看該作者
39#
發(fā)表于 2025-3-28 09:05:12 | 只看該作者
Boundedness of the Hodge Projector,In this chapter, we discuss .-boundedness of the Hodge projector associated to . (that is, . in the case when .?=?1). We obtain a characterization of the range for . in terms of critical numbers.
40#
發(fā)表于 2025-3-28 14:10:52 | 只看該作者
Basic Properties of Weak Solutions,At this point in the monograph we begin to slightly change our perspective from Hardy spaces adapted to .?=??.?÷.?. to weak solutions to the associated elliptic system in the upper half-space. In this chapter, we gather well-known properties of weak solutions that will frequently be used in the further course.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁县| 荆门市| 沽源县| 镇远县| 浦城县| 清丰县| 周至县| 英德市| 绥芬河市| 玉树县| 普定县| 阿拉善盟| 怀仁县| 丽水市| 峡江县| 历史| 兴海县| 丰台区| 定边县| 赣州市| 蚌埠市| 甘德县| 平湖市| 九台市| 栾川县| 怀化市| 清水县| 巍山| 女性| 鄯善县| 全州县| 瑞丽市| 肇州县| 祁门县| 焦作市| 罗甸县| 百色市| 威信县| 安岳县| 祁东县| 鹤壁市|