找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Stabilization of Parabolic Equations; Ionu? Munteanu Book 2019 Springer Nature Switzerland AG 2019 Parabolic Partial Differential

[復制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 12:04:15 | 只看該作者
12#
發(fā)表于 2025-3-23 15:14:21 | 只看該作者
13#
發(fā)表于 2025-3-23 21:59:13 | 只看該作者
Stabilization of Abstract Parabolic Equations,s we will see, these features will enable us to obtain the first results to appear in the literature regarding the stabilization of different equations, such as the stochastic heat equation, the Chan–Hilliard equations, and for boundary stabilization to nonsteady states for parabolic-type equations.
14#
發(fā)表于 2025-3-24 01:00:36 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:29 | 只看該作者
https://doi.org/10.1007/978-94-6091-648-9ar parabolic-like equations, namely equations for which their linear parts are generated by analytic .-semigroups. In what follows, we will simply refer to them as parabolic equations, in concordance with the title of this book. The feedback law’s main features are that it is expressed in an explici
16#
發(fā)表于 2025-3-24 09:50:37 | 只看該作者
17#
發(fā)表于 2025-3-24 14:25:14 | 只看該作者
18#
發(fā)表于 2025-3-24 15:57:39 | 只看該作者
https://doi.org/10.1007/978-94-6209-992-0ion at previous times. More exactly, we consider in the model aftereffect phenomena by adding a memory term. Engineers conclude that actuators, sensors that are involved in feedback control, introduce, in addition, delays into the system. That is why from the control engineering point of view it is
19#
發(fā)表于 2025-3-24 22:54:20 | 只看該作者
20#
發(fā)表于 2025-3-25 00:39:54 | 只看該作者
https://doi.org/10.1007/978-94-6300-818-1btained from the linearization of the equation around the trajectory is time-dependent, so its spectrum is time-dependent as well. This means that the spectral method leaves out this case. We will follow the approach from Sect. ., Chap.?7. Namely, we will write the solution of the nonlinear equation
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 05:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
漾濞| 苍梧县| 萝北县| 苍梧县| 金寨县| 蒲城县| 化州市| 康保县| 巍山| 泉州市| 静海县| 荥经县| 保德县| 苍山县| 娱乐| 乌拉特中旗| 阿瓦提县| 宝坻区| 齐河县| 镇康县| 安新县| 夏邑县| 甘孜县| 平凉市| 江华| 安丘市| 双桥区| 修武县| 怀化市| 荥经县| 会泽县| 汉阴县| 昌吉市| 呼伦贝尔市| 姚安县| 玛曲县| 桃园县| 朔州市| 承德县| 进贤县| 屏南县|