找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter; Abhijeet Alase Book 2019 Springer Nature Switzerland AG

[復制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 12:03:09 | 只看該作者
Abhijeet AlaseNominated as an outstanding PhD thesis by Dartmouth College.Deepens understanding of topological phases via the bulk-boundary correspondence.Describes a generalization of Bloch‘s theorem and its appli
12#
發(fā)表于 2025-3-23 17:36:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:57 | 只看該作者
14#
發(fā)表于 2025-3-24 00:47:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:32:07 | 只看該作者
Book 2019ver translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch‘s Theorem. A cornerstone of electronic band structure
16#
發(fā)表于 2025-3-24 09:26:51 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:09 | 只看該作者
J. S. Rimmer,B. Hamilton,A. R. Peakerondence. We spell out the connections of the generalized Bloch theorem with the well-known transfer matrix method. We discuss how higher-dimensional systems and interfaces can be analyzed by extending generalized Bloch theorem.
18#
發(fā)表于 2025-3-24 16:11:17 | 只看該作者
,Generalization of Bloch’s Theorem to Systems with Boundary,ondence. We spell out the connections of the generalized Bloch theorem with the well-known transfer matrix method. We discuss how higher-dimensional systems and interfaces can be analyzed by extending generalized Bloch theorem.
19#
發(fā)表于 2025-3-24 20:48:55 | 只看該作者
2190-5053 .Describes a generalization of Bloch‘s theorem and its appli.This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch’s Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thes
20#
發(fā)表于 2025-3-25 02:31:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扎鲁特旗| 九龙城区| 四平市| 岑巩县| 中山市| 栾城县| 德昌县| 贵州省| 保靖县| 云霄县| 五原县| 东平县| 昆山市| 辉县市| 新田县| 房产| 新郑市| 伽师县| 望城县| 集安市| 凭祥市| 中西区| 大埔区| 安徽省| 营山县| 元氏县| 松阳县| 会同县| 高阳县| 鄱阳县| 读书| 格尔木市| 重庆市| 苏尼特右旗| 新兴县| 应用必备| 原阳县| 弥渡县| 酒泉市| 卢龙县| 邯郸县|