找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Integral Equations on Contours with Peaks; Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S Book 2010 Birkh?user Basel 2010 Dir

[復(fù)制鏈接]
樓主: oxidation
11#
發(fā)表于 2025-3-23 11:22:04 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:20 | 只看該作者
13#
發(fā)表于 2025-3-23 20:39:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:39:33 | 只看該作者
https://doi.org/10.1007/978-3-0346-0171-9Dirichlet problem; Integral equation; Neumann problem; boundary integral equation; elasticity theory
15#
發(fā)表于 2025-3-24 04:52:30 | 只看該作者
Birkh?user Basel 2010
16#
發(fā)表于 2025-3-24 10:23:20 | 只看該作者
Boundary Integral Equations on Contours with Peaks978-3-0346-0171-9Series ISSN 0255-0156 Series E-ISSN 2296-4878
17#
發(fā)表于 2025-3-24 12:36:59 | 只看該作者
18#
發(fā)表于 2025-3-24 18:51:05 | 只看該作者
https://doi.org/10.1007/BFb0119075lem . and the Neumann problem . in a plane bounded simply connected domain Ω. with a peak at the boundary Γ. Here and elsewhere we assume the normal . to be outward. Another assumption is that the vertex of the peak is placed at the origin.
19#
發(fā)表于 2025-3-24 19:16:49 | 只看該作者
,Boundary Integral Equations in H?lder Spaces on a Contour with Peak,lem . and the Neumann problem . in a plane bounded simply connected domain Ω. with a peak at the boundary Γ. Here and elsewhere we assume the normal . to be outward. Another assumption is that the vertex of the peak is placed at the origin.
20#
發(fā)表于 2025-3-25 01:00:39 | 只看該作者
Asymptotic Formulae for Solutions of Boundary Integral Equations Near Peaks,form of double layer potentials . and single layer potentials . For the internal Dirichlet problem and for the external Neumann problem the densities of the corresponding potentials can be found from the boundary integral equations . where . is the value of the potential . at a boundary point, and .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长兴县| 远安县| 枞阳县| 晋中市| 安乡县| 穆棱市| 祁阳县| 奈曼旗| 黑水县| 泾川县| 沙河市| 喀什市| 彭阳县| 黄大仙区| 罗城| 蒲城县| 郓城县| 镇宁| 沙坪坝区| 舟山市| 尤溪县| 安宁市| 五大连池市| 教育| 平乐县| 辽中县| 长武县| 龙泉市| 清原| 神农架林区| 长治市| 咸丰县| 淳化县| 大化| 嘉黎县| 青铜峡市| 衡南县| 五华县| 金寨县| 专栏| 五河县|