找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Element Techniques in Computer-Aided Engineering; C. A. Brebbia Book 1984 Martinus Nijhoff Publishers, Dordrecht 1984 Numerical i

[復(fù)制鏈接]
樓主: 詞源法
11#
發(fā)表于 2025-3-23 13:30:53 | 只看該作者
Time Dependent Potential Problems,aw and Jaeger, 1969, ch.X, where Kelvin is credited with having made systematic use of this method to obtain analytical solutions. The integral representation to be derived below in Section 2 appears in Boley and Weiner, 1960, but without any numerical treatment.
12#
發(fā)表于 2025-3-23 16:49:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:56:33 | 只看該作者
A Choice of Fundamental Solutions,tained as the particular singular solution of an elliptic boundary value problem which corresponds to a “concentrated load” (i.e. the right hand side is a delta function; see, for example, Chapter 4 of Brebbia and Walker, 1980). Now it turns out that in general, the singular part of the fundamental
14#
發(fā)表于 2025-3-24 00:00:32 | 只看該作者
Formulation for Cracks in Plate Bending,in bounded near the boundary origin point. However, in a number of significant problems the stress resultants do indeed become unbounded, for example at the base of a through crack or more generally at a reentrant corner. In these cases the singular behavior of the stress resultants are frequently t
15#
發(fā)表于 2025-3-24 04:55:28 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:47 | 只看該作者
18#
發(fā)表于 2025-3-24 14:56:41 | 只看該作者
19#
發(fā)表于 2025-3-24 22:30:15 | 只看該作者
Electrostatics Problems,for the solution of this type of problem because it can easily and accurately model the singularities which commonly occur in this type of problem. Secondly and perhaps most importantly it easily models infinite regions.
20#
發(fā)表于 2025-3-25 02:20:30 | 只看該作者
Scalar and Vector Potential Theory,B. It is convenient to write dq for the area element at ., in which case σ(.)dq defines the charge strength associated with dq. This generates an electrostatic potential g(.,.)σ(.)dq at any point . of space, where ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 诏安县| 兴安盟| 平泉县| 修水县| 洪湖市| 梓潼县| 通渭县| 万载县| 大同市| 泾源县| 青海省| 乐昌市| 兴城市| 栾城县| 陆丰市| 广昌县| 正蓝旗| 孝昌县| 同仁县| 阿荣旗| 元谋县| 托克托县| 丹棱县| 万全县| 鄂州市| 宁德市| 文化| 枣庄市| 永川市| 且末县| 榆树市| 开平市| 南靖县| 彭泽县| 涡阳县| 腾冲县| 潼南县| 永宁县| 新竹县| 宜兰县|