找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Algorithms for Multidimensional Inviscid Hyperbolic Flows; a GAMM-Workshop Karl F?rster Book 1978 Springer Fachmedien Wiesbaden 19

[復(fù)制鏈接]
樓主: 次要
31#
發(fā)表于 2025-3-26 21:34:16 | 只看該作者
A Second Order Finite Difference Integration Scheme Using the Compatibility Relationsery simple predictor and corrector step are combined to assure a second order accurate integration. The drawback of this scheme, as for most schemes, is that the background is purely mathematical. “Physical” properties of the equations, such as the existence of characteristic directions, are not tak
32#
發(fā)表于 2025-3-27 02:14:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:57:50 | 只看該作者
34#
發(fā)表于 2025-3-27 12:43:27 | 只看該作者
Concluding Remarks to the Workshop Sessionn of partial differential equations of the hyperbolic type. The search began about fifteen years ago, with the advent of high-speed computers and the birth of numerical gas dynamics, and it was performed, for many years, on purely mathematical grounds. The order of accuracy of a given scheme and its
35#
發(fā)表于 2025-3-27 14:17:50 | 只看該作者
36#
發(fā)表于 2025-3-27 19:37:24 | 只看該作者
Method of Characteristics with Simplicial Netsflow /7/ the exact values of all the flow field quantities are known. This special type of flow which includes subsonic, transonic and supersonic regions can be used as a standard for comparison of time-dependent techniques with respect to error growth.
37#
發(fā)表于 2025-3-27 23:49:48 | 只看該作者
Some Examples of Religious Ecstasy,flow /7/ the exact values of all the flow field quantities are known. This special type of flow which includes subsonic, transonic and supersonic regions can be used as a standard for comparison of time-dependent techniques with respect to error growth.
38#
發(fā)表于 2025-3-28 05:30:03 | 只看該作者
Boundary Algorithms for Multidimensional Inviscid Hyperbolic Flowsa GAMM-Workshop
39#
發(fā)表于 2025-3-28 09:14:05 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娱乐| 桃江县| 西宁市| 甘洛县| 崇义县| 来凤县| 柯坪县| 鄢陵县| 永兴县| 新龙县| 赞皇县| 惠来县| 疏勒县| 平定县| 台山市| 从江县| 汶川县| 吉安市| 顺昌县| 长兴县| 泰安市| 新河县| 嵊泗县| 隆回县| 青海省| 镇雄县| 阜康市| 石林| 扎鲁特旗| 江门市| 颍上县| 依兰县| 塔河县| 建昌县| 昆山市| 怀远县| 珠海市| 荆州市| 商水县| 凌源市| 栾城县|