找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bodies of Constant Width; An Introduction to C Horst Martini,Luis Montejano,Déborah Oliveros Textbook 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: 夸大
41#
發(fā)表于 2025-3-28 18:03:06 | 只看該作者
Figures of Constant Width,In this chapter, bodies of constant width in the plane are studied. We call them figures of constant width. In studying them, it is important to recall from Section?. that the concepts “normal”, “binormal”, “diameter”, and “diametral chord” coincide.
42#
發(fā)表于 2025-3-28 21:31:50 | 只看該作者
Bodies of Constant Width in Minkowski Spaces,In Euclidean space, the length of a segment depends only on its magnitude, never on its direction. However, for certain geometrical problems the need arises to give a different definition for the length of a segment that depends on both the magnitude and the direction.
43#
發(fā)表于 2025-3-28 23:30:59 | 只看該作者
44#
發(fā)表于 2025-3-29 03:27:33 | 只看該作者
Mixed Volumes,The notion of . represents a profound concept first discovered by Minkowski in 1900. In the letter?[838] he wrote to Hilbert explaining his discoveries as interesting and quite enlightening. As we can see below, this concept will allow us to prove several classical theorems on the volume of constant width bodies in a somewhat unexpected way.
45#
發(fā)表于 2025-3-29 11:08:30 | 只看該作者
Bodies of Constant Width in Analysis,One of the most fascinating theorems on 3-dimensional bodies of constant width, stated and proved by H. Minkowski in 1904, is presented in this section.
46#
發(fā)表于 2025-3-29 14:03:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:48:31 | 只看該作者
48#
發(fā)表于 2025-3-29 23:25:54 | 只看該作者
Concepts Related to Constant Width,A polytope . is . about a convex body . if . and each facet of . intersects .; i.e., every facet of . is contained in a support hyperplane of .. A polytope . is . in the convex body . if . and each of its vertices belongs to ..
49#
發(fā)表于 2025-3-30 03:34:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:14:59 | 只看該作者
Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 南宁市| 余庆县| 东港市| 景德镇市| 甘孜县| 玉屏| 浦东新区| 长垣县| 蕲春县| 寿阳县| 军事| 蓬莱市| 沙雅县| 蕲春县| 汝州市| 太仆寺旗| 江达县| 海安县| 越西县| 农安县| 洛阳市| 梧州市| 佛学| 青铜峡市| 木兰县| 宿迁市| 阿巴嘎旗| 和硕县| 新晃| 兴义市| 上饶县| 东平县| 宝应县| 福鼎市| 鸡泽县| 新兴县| 高碑店市| 铁岭市| 无极县| 祁东县|