找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Blocks of Finite Groups and Their Invariants; Benjamin Sambale Book 2014 Springer International Publishing Switzerland 2014 20C15,20C20,20

[復(fù)制鏈接]
樓主: 大口水罐
31#
發(fā)表于 2025-3-26 22:37:31 | 只看該作者
Introduction to Life in the Universelt due to various authors. In the odd case we give a proof of Brauer’s .(.)-Conjecture, Olsson’s Conjecture and Brauer’s Height Zero Conjecture. Moreover, we use a recent result by Watanabe to describe blocks with metacyclic, minimal non-abelian defect groups.
32#
發(fā)表于 2025-3-27 03:48:00 | 只看該作者
https://doi.org/10.1007/978-94-007-1003-0isely, we consider products of cyclic groups and 2-groups of maximal nilpotency class. These are the dihedral, semidihedral and quaternion groups. As an application we verify several open conjectures for these special cases.
33#
發(fā)表于 2025-3-27 06:45:38 | 只看該作者
The Origin of Biogenic Elementsups. In this chapter we classify all saturated fusion systems on bicyclic groups. For odd primes, every bicyclic group is metacyclic and the classification is due to Stancu. In case .?=?2 the classification is very delicate. As an application we verify Olsson’s Conjecture for blocks with bicyclic defect groups.
34#
發(fā)表于 2025-3-27 11:17:19 | 只看該作者
J. Rivera Islas,J. C. Micheau,T. Buhse. We use this classification in order to prove Olsson’s Conjecture for all blocks with defect groups of .-rank at most 2 provided . > 3. We also develop general methods which deal with controlled blocks.
35#
發(fā)表于 2025-3-27 14:23:51 | 只看該作者
Robert S. Mulliken,Bernard J. Ransil M.D.nd for blocks with abelian defect groups. The proof uses results about regular orbits under coprime actions. Moreover, we show that Brauer’s .(.)-Conjecture holds for blocks with abelian defect groups if the inertial index is less than 256.
36#
發(fā)表于 2025-3-27 18:50:32 | 只看該作者
Benjamin SambaleCovers a comprehensive range of the most recent literature on block theory.Contains new previously unpublished material.Can be used as a handy reference for blocks with given defect groups.Includes su
37#
發(fā)表于 2025-3-28 01:33:55 | 只看該作者
38#
發(fā)表于 2025-3-28 03:14:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:47:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
册亨县| 肥西县| 田阳县| 项城市| 大冶市| 桂平市| 兴海县| 湘阴县| 神木县| 来安县| 济源市| 蒙城县| 古丈县| 陕西省| 志丹县| 开阳县| 文水县| 韩城市| 柳州市| 株洲县| 平罗县| 青神县| 子洲县| 封丘县| 海宁市| 丁青县| 汤原县| 衡东县| 牡丹江市| 上蔡县| 南陵县| 内江市| 怀来县| 双鸭山市| 公主岭市| 穆棱市| 三明市| 长垣县| 茌平县| 四子王旗| 汉寿县|