找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blind Speech Separation; Shoji Makino,Hiroshi Sawada,Te-Won Lee Book 2007 Springer Science+Business Media B.V. 2007 Independent Component

[復(fù)制鏈接]
樓主: Eschew
41#
發(fā)表于 2025-3-28 18:27:38 | 只看該作者
42#
發(fā)表于 2025-3-28 18:53:44 | 只看該作者
43#
發(fā)表于 2025-3-29 00:26:49 | 只看該作者
Lernkurve und Unternehmungswandelaches the heart of the algorithm, but rather as . the heart of the algorithm: after the coeffi- cients have been found, only trivial processing remains to be done. We show how, by suitable choice of overcomplete basis, this framework can use a variety of cues (., speaker identity, differential filte
44#
發(fā)表于 2025-3-29 06:02:59 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:45 | 只看該作者
46#
發(fā)表于 2025-3-29 13:24:18 | 只看該作者
Frequency-Domain Blind Source Separationcy masking for a case where the separation by linear filters is insufficient when the sources outnumber the microphones. Experimental results are shown for a simple 3-source 3-microphone case, and also for a rather complicated case with many background interference signals.
47#
發(fā)表于 2025-3-29 17:09:42 | 只看該作者
TRINICON-based Blind System Identification with Application to Multiple-Source Localization and SepaED, several sources can be localized simultaneously. Performance evaluation in realistic scenarios will show that this method compares favourably with other state-of-the-art methods for source localization.
48#
發(fā)表于 2025-3-29 21:56:25 | 只看該作者
SIMO-Model-Based Blind Source Separation – Principle and its ApplicationsSIMO-ICA can maintain the spatial qualities of each sound source. This attractive feature of the SIMO-ICA shows the promise of applicability to many high-fidelity acoustic signal processing systems. As a good examples of SIMO-ICA’s application, binaural signal separation and blind separation–deconvo
49#
發(fā)表于 2025-3-30 00:24:29 | 只看該作者
Independent Vector Analysis for Convolutive Blind Speech Separatione–frequency model of speech has been modelled by several multivariate joint densities, and natural gradient or Newton method algorithms have been derived. Here, we present a gentle tutorial on IVA for the separation of speech signals in the frequency domain.
50#
發(fā)表于 2025-3-30 06:58:23 | 只看該作者
The DUET Blind Source Separation Algorithmn of speech is sparse and this leads to W-disjoint orthogonality. The algorithm is easily coded and a simple Matlab? implementation is presented1. Additionally in this chapter, two strategies which allow DUET to be applied to situations where the microphones are far apart are presented; this removes
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
右玉县| 鄂温| 鄂托克旗| 新宾| 屯门区| 石台县| 巩留县| 九龙坡区| 万载县| 明溪县| 扬州市| 鄯善县| 咸丰县| 北流市| 金山区| 嘉峪关市| 云安县| 大宁县| 古蔺县| 巨鹿县| 洪江市| 易门县| 图们市| 错那县| 图们市| 枞阳县| 威信县| 盘山县| 万年县| 石屏县| 太谷县| 拜泉县| 昌黎县| 象山县| 浦江县| 江山市| 灵璧县| 如东县| 宜章县| 西乡县| 永善县|