找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blaschke Products and Their Applications; Javad Mashreghi,Emmanuel Fricain Book 2013 Springer Science+Business Media New York 2013 Blaschk

[復(fù)制鏈接]
樓主: Julienne
11#
發(fā)表于 2025-3-23 10:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:14:50 | 只看該作者
Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane,aper we will introduce an analogous construction in the Hardy space of the upper half plane. The levels of the multiresolution are generated by localized Cauchy kernels on a special hyperbolic lattice in the upper half plane. This multiresolution has the following new aspects: the lattice which gene
13#
發(fā)表于 2025-3-23 21:46:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:23 | 只看該作者
J. Haring (staatl. Prüfungskommissar)mal” Blaschke product with the same critical points. These maximal Blaschke products have remarkable properties similar to those of Bergman space inner functions and they provide a natural generalization of the class of finite Blaschke products.
15#
發(fā)表于 2025-3-24 02:57:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:17 | 只看該作者
1069-5265 ons in differential equations are examined for the first tim.?Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic a
17#
發(fā)表于 2025-3-24 11:24:19 | 只看該作者
https://doi.org/10.1007/978-3-662-25407-3 Cauchy transforms into the normalized univalent functions. We show that for the subspace .. of Cauchy transforms the univalent functions so obtained have quasi-conformal extensions to all of the plane.
18#
發(fā)表于 2025-3-24 18:09:41 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苗栗县| 军事| 含山县| 海门市| 南宫市| 兰溪市| 乌审旗| 阿图什市| 镇宁| 长顺县| 宁明县| 白玉县| 漯河市| 墨江| 东方市| 平山县| 衡东县| 延庆县| 乃东县| 瓦房店市| 东阿县| 扶风县| 黑山县| 高碑店市| 比如县| 股票| 吉隆县| 永丰县| 泌阳县| 揭阳市| 黔东| 定边县| 巴里| 海盐县| 高要市| 元阳县| 巴楚县| 青龙| 阳原县| 东光县| 商洛市|