找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Black Hole Information and Thermodynamics; Dieter Lüst,Ward Vleeshouwers Book 2019 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: fundoplication
31#
發(fā)表于 2025-3-26 21:47:14 | 只看該作者
Black Hole Thermodynamics,During last lecture, we discussed black hole thermodynamics and mechanics. The zero’th law states that surface gravity is constant over an event horizon. For our discussion of the first law we considered Komar quantities.
32#
發(fā)表于 2025-3-27 05:08:15 | 只看該作者
Quantum Field Theory in Curved Space-Time Backgrounds,The scalar field action is given by .. We promote the field . to an operator . with associated creation and annihilation operators, which we can then make time-dependent as
33#
發(fā)表于 2025-3-27 08:25:56 | 只看該作者
34#
發(fā)表于 2025-3-27 12:40:27 | 只看該作者
Information Loss Paradox,The results of the last few lectures can be summarized as follows
35#
發(fā)表于 2025-3-27 17:12:29 | 只看該作者
Brane Solutions,In the (NS, NS)-sector, we have the explicit solution given by the fundamental string for .,
36#
發(fā)表于 2025-3-27 21:20:34 | 只看該作者
Special Relativity,tial distances (as well as temporal intervals) invariant. For example, in two spatial dimensions with coordinates (.,?.), the squared distance . is invariant under rotations, which are of the form . The invariance of spatial (Euclidean) distance is then given by ..
37#
發(fā)表于 2025-3-28 01:42:04 | 只看該作者
38#
發(fā)表于 2025-3-28 02:55:03 | 只看該作者
Black Holes,is compressed into a small region of space-time. It is characterized by a curvature singularity at the origin which is ‘screened’ to outside observers by a coordinate singularity at finite radial distance. This coordinate singularity is known as the ., which will be seen to exhibit deep connections with thermodynamic systems.
39#
發(fā)表于 2025-3-28 06:14:34 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
留坝县| 嘉峪关市| 阳城县| 开封市| 武鸣县| 阳江市| 荃湾区| 岳阳市| 双牌县| 光山县| 徐汇区| 梁平县| 全椒县| 大埔区| 太湖县| 龙陵县| 东阿县| 深泽县| 桂阳县| 昭苏县| 射阳县| 长沙市| 温州市| 凤庆县| 苏州市| 罗山县| 楚雄市| 阿拉善左旗| 锡林浩特市| 靖安县| 阳西县| 吉木乃县| 上高县| 青岛市| 金堂县| 望都县| 尤溪县| 北海市| 昔阳县| 广德县| 老河口市|