找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birkhoff–James Orthogonality and Geometry of Operator Spaces; Arpita Mal,Kallol Paul,Debmalya Sain Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: HARDY
11#
發(fā)表于 2025-3-23 10:19:03 | 只看該作者
Der Taylorsche Satz und Potenzreihen,The concept of smoothness is one of the fundamental aspects of the theory of Banach spaces, both from geometric and analytic points of view. Indeed, a cursory look at the contents of any classical or modern textbook on the subject matter would suffice to argue in favor of our claim.
12#
發(fā)表于 2025-3-23 15:16:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:19 | 只看該作者
Notations and Terminologies,The notations and terminologies to be used throughout this monograph are mentioned in this chapter.
14#
發(fā)表于 2025-3-24 00:12:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:05 | 只看該作者
Operator Norm Attainment,Linear operators lie at the very heart of functional analysis and operator theory. As mentioned in the Preface, this monograph aims at exploring the beautiful interrelation between analysis, algebra, and geometry in the space of bounded linear operators between Banach spaces.
16#
發(fā)表于 2025-3-24 07:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:29 | 只看該作者
Extreme Contractions,Extremal structure of the unit ball of an operator space is certainly an important topic in the geometry of bounded linear operators.
18#
發(fā)表于 2025-3-24 18:00:22 | 只看該作者
Birkhoff–James Orthogonality and Geometry of Operator Spaces978-981-99-7111-4Series ISSN 2363-6149 Series E-ISSN 2363-6157
19#
發(fā)表于 2025-3-24 20:55:26 | 只看該作者
https://doi.org/10.1007/978-3-663-12214-2. Therefore, understanding B–J orthogonality of operators is of paramount importance to us. In this chapter, we gradually build the theory of characterizing B–J orthogonality of operators between Banach (Hilbert) spaces, up?to its fullest generality.
20#
發(fā)表于 2025-3-25 00:23:41 | 只看該作者
Der Taylorsche Satz und Potenzreihen, Indeed, one of the fundamental differences between the usual orthogonality in Hilbert spaces and B-J orthogonality in Banach spaces is that unlike the former one, the later one is, in general, asymmetric.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 南郑县| 广宁县| 安溪县| 体育| 子长县| 泸溪县| 盐城市| 宜春市| 扎赉特旗| 铜山县| 新巴尔虎左旗| 溆浦县| 封丘县| 灵寿县| 中江县| 河西区| 德昌县| 怀安县| 湄潭县| 萝北县| 理塘县| 山西省| 阳曲县| 阿拉善右旗| 乐安县| 兴安县| 策勒县| 柘荣县| 炉霍县| 隆林| 江阴市| 荔浦县| 凤山县| 玛沁县| 寿阳县| 奉新县| 阿拉善盟| 亳州市| 黔西县| 永德县|